
Mobile Application

Develpment

Multiple Activities and

Intents

Multiple Activities
Many apps have multiple activities.

 Example: In an address book app, the main activity is a list of contacts,

and clicking on a contact goes to another activity for viewing details.

 An activity 1 can launch another activity 2 in response to an event.

 The activity 1 can pass data to activity 2.

 The second activity 2 can send data back to activity 1 when it is done.

Intent
Intent: a bridge between activities; a way for one activity to invoke another

 The activity can be in the same app or in a different app.

 Intent can store extra data to pass as "parameters" to that activity.

 Second activity can "return" information back to the caller if needed.

 Intent is use for broadcasting messages between Android OS and

applications (battery is low).

 Start a service(open email, web browser& calling).

Intent Structure

 Intent Structure:

 Intents are objects of the android.content.Intent type.

 The primary pieces of information in an intent are:

 Action -- The general action to be performed, such as ACTION_VIEW,

ACTION_EDIT, ACTION_MAIN, etc.

 Data -- The data to operate on, such as a person record in the contacts

database, expressed as a Uri.



Types of intents
Android supports explicit and implicit intents.

 Explicit Intents: explicitly define the component which should be

called by the Android system, by using the Java class as identifier.

 Example: The following creates an explicit intent and send it to the

Android system. If the class specified in the intent represents an

activity, the Android system starts it.

 Intent i = new Intent(this, ActivityTwo.class);

 startActivity(i);

Explicit intents are typically used

within on application as the classes in

 an application are controlled by

the application developer.

Types of intents
 Implicit Intents: specify the action which should be

performed and optionally data which provides content for

the action.

 For example, the following tells the Android system to

view a webpage. All installed web browsers should be

registered to the corresponding intent data via an intent filter.

 Intent i = new Intent(Intent.ACTION_VIEW,
Uri.parse("http://www.google.com"));

 startActivity(i);

implicit intent : searches for all components which are

registered for the specific action and the fitting data type.

- one component: Android starts this component directly.

- several components: the user will get a selection dialog

and can decide which component should be used for the intent.

Intents and intent filter
 Illustration of how an implicit intent is delivered through the system to

start another activity:

[1] Activity A creates an Intent with an action description and passes

it to startActivity().

[2] The Android System searches all apps for an intent filter that

 matches the intent.

[3] When a match is found the system starts the matching activity
(Activity B) by invoking its onCreate() method and passing it the

Intent.

passing any parameters

If you need to pass any parameters or data to the second activity, call
putExtra on the intent.

 Intent intent = new Intent(this,ActivityName.class);

 intent.putExtra("name1", value);

 intent.putExtra("name2", value);

 startActivity(intent);

Example:

 Intent i = new Intent(this, NewActivity.class);

 i.putExtra("firstName", “Mike");
 i.putExtra("lastName", “Jones");
 startActivity(i);

Extracting extra data
In the second activity that was invoked, you can grab any extra data

 that was passed to it by the calling act.

– You can access the Intent that spawned you by calling getIntent.

– The Intent has methods like getExtra, getIntExtra, getStringExtra,

 etc. to extract any data that was stored inside the intent.

 Intent intent = getIntent();

 String extra = intent.getExtra("name1");

Example:

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.view);

 Intent intent = getIntent();

 String fName = intent.getStringExtra("firstName");

 String lName = intent.getStringExtra("lastName");

}

Sending back a result

In the second activity that was invoked, send data back:

– Need to create an Intent to go back.

– Store any extra data in that intent; call setResult and finish.

 public class SecondActivity extends Activity {

 ...

 public void onClick(View view) {

 Intent i = new Intent();

 String message = "abc";

 intent.putExtra("MESSAGE",message);

 setResult(2,i);

 finish(); // calls onDestroy

 }

}

Waiting for a result
If calling activity wants to wait for a result from called activity:

– Call startActivityForResult rather than startActivity.

● startActivityForResult requires you to pass a unique ID number

 to represent the action being performed.

● By convention, you declare a final int constant with a value of your

choice.

● The call to startActivityForResult will not wait; it will return

immediately.

– Write an onActivityResult method that will be called when the second

activity is done.

● Check for your unique ID as was passed to startActivityForResult.

● If you see your unique ID, you can ask the intent for any extra data.

In First Activity uses

startActivityForResult
Intent i = new
Intent(MainActivity.this,SecondActivity.class);

//suppose RequestCode == 2; MUST be 0-65535

// Call Back method to get the Message form other Activity

 startActivityForResult(i,2);

@Override

protected void onActivityResult(int requestCode, int
resultCode, Intent i) {

 super.onActivityResult(requestCode, resultCode, data);

 if(requestCode==2) {

 if(resultCode == Activity.RESULT_OK) {

 String message= i.getStringExtra("MESSAGE");

 Toast.makeText(this,"Got back: " +message,

 Toast.LENGTH_SHORT).show();}

 }

 }

Implicit Intent (link)
implicit intent: One that launches another app, without naming

that specific app, to handle a given type of request or action.

– Examples: invoke default browser; load music player to play a song

// make a phone call

 Uri number = Uri.parse("tel:5551234");

 Intent callIntent = new Intent(Intent.ACTION_DIAL, number);

// go to a web page in the default browser

 Uri webpage = Uri.parse("http://www.stanford.edu/");

 Intent webIntent = new Intent(Intent.ACTION_VIEW, webpage);

// open a map pointing at a given latitude/longitude (z=zoom)

 Uri location = Uri.parse("geo:37.422219,-122.08364?z=14");

 Intent mapIntent = new Intent(Intent.ACTION_VIEW, location);

Adding an Activity
in Android Studio, right click "app" at left: New -> Activity

 creates a new .XML file in res/layouts

 creates a new .java class in src/java

 adds information to AndroidManifest.xml about the activity

 (without this information, the app will not start the activity)

Activities in Manifest

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.myusername.myapplication" >

<application android:allowBackup="true"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme" >

<activity android:name=".MainActivity"

android:label="@string/app_name" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

• Every activity has an entry in project's AndroidManifest.xml, added

automatically by Android Studio:

Activities in Manifest Continues

<activity android:name=".SecondActivity"

android:label="@string/title_activity_second"

android:parentActivityName=".MainActivity" >

<meta-data android:name="android.support.PARENT_ACTIVITY"

android:value="com.example.myusername.myapplication.MainActivity" />

</activity>

</application>

</manifest>

You can find more information

about
 Intents

https://developer.android.com/guide/components/intents-filters.html

 App Manifest Overview

 https://developer.android.com/guide/topics/manifest/manifest-intro

https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro

