Dart — Data Types




Like other languages (C, C++, Java), whenever a variable is created, each variable has an
associated data type. In Dart language, there is the type of values that can be represented
and manipulated in a programming language.

Data Type Keyword Description
Number num, int, double, Bigint :\iltl;:r;?sers In Dart are used to represent numeric
Strings String Strings represent a sequence of characters
Booleans bool It represents Boolean values true and false
Lists List It is an ordered group of objects
Maps Map It represents a set of values as key-value pairs
Sets Set iItterr?]ps).resents an unordered collection of unique




1. Number: The number in Dart Programming is the data type that is used to hold the
numeric value. Dart numbers can be classified as:

* The num type is an inherited data type of the int and double types.

* The Int data type Is used to represent whole numbers.

* The double data type is used to represent 64-bit floating-point numbers.

void main() {
int numl = 2;

double num2 = 1.5;

print(numl);

print(num2);
var al = num.parse( ); 2
var bl = num.parse( ); 1.5

var ¢l = al + bi; Sum = 3.34
print( c1}");




2. String: It used to represent a sequence of characters. The keyword string Is
used to represent string literals. String values are embedded in either single or
double-quotes.

void main() {

String string =

String str = ; Welcome to Dart
String strl = . Coding is Fun

print(string);

print(str + strl);




3. Boolean: It represents Boolean values true and false. The keyword bool is used to represent a
Boolean literal in DART.

void main() {
String str =
String strl =

bool val = (str == strl);
print(val);




4. List: Dart List is similar to an array, which is the ordered collection of the objects. The array is

the most popular and commonly used collection in any other programming language. The Dart
list looks like the JavaScript array literals. The syntax of declaring the list is given below.

var listl =[10, 15, 20,25,30]

The Dart list is defined by storing all elements inside the square bracket [] and separated by
commas (,).
The graphical representation of the list :

list1

0 1 2 3 4 «— [ndex

10 1520 25 30 < Elements




| iIcte Cnnt

Important information you should know before working with Dart Llist:

*There are kinds of List: fixed-length list (list’s length cannot be changed) & growable
list (size can be changed to accommodate new items or remove items)

eDart List I1s an ordered collection which maintains the insertion order of the items.
Dart List allows duplicates and null values.

*While an operation on the list is being performed, modifying the list’s length (adding
or removing items) will break the operation.



Types of Lists
The Dart list can be categorized into two types -

1. Fixed Length List
The fixed-length lists are defined with the specified length. We cannot change the size at runtime.
The syntax is given below.

Var list= List.filled(int length, fill, {bool growable = false})

The above syntax is used to create the list of the fixed size. We cannot add or delete an element at
runtime. It will throw an exception if any try to modify its size.

The syntax of initializing the fixed-size list element is given below.

list_name[index] = value;



void main() {
var listl = List.filled(5, 0);
list1[0] = 10;
list1[1] 11;
listl[2] 12;

list1[3] = 13;
listl[4] 14;
print(listl);

[10, 11, 12, 13, 14]




2. Growable List
The list is declared without specifying size is known as a Growable list. The size of the Growable

list can be modified at the runtime. The syntax of the declaring Growable list is given below.

// creates a list with values
var list_name = [vall, val2, val3] Or // creates a list of the size zero
var list_ name =[]

void main() A
var myList = [10, 20, 30];
print( myList");

print(
myList.add(40);
myList.add(50);
print(myList);

Original list: [10, 20, 30]
Adding elements to the end of the list...
[10, 20, 30, 40, 50]



List Properties
Below are the properties of the list.

Property
first
ISEmpty
ISNotEmpty

length

last

reversed

Single

Description

It returns the first element case.
It returns true if the list is empty.

It returns true if the list has at least one element.

It returns the length of the list.

It returns the last element of the list.

It returns a list in reverse order.

It checks if the list has only one element and
returns it.



Inserting Element into List
Dart provides four methods which are used to insert the elements into the lists. These methods are

given below.

1. The add() Method
This method is used to insert the specified value at the end of the list. It can add one element at a

time and returns the modified list object. Let's understand the following example

void main() A
var odd list = [1, 3, 5, 7, 9];
print(odd_list);

odd list.add(11);
print(odd_1list);

¥




2. The addAll() Method

This method is used to insert the multiple values to the given list. Each value is separated by the
commas and enclosed with a square bracket ([])

void main() {
var odd _list = [1, 3, 5, 7, 9];
print(odd list);

odd list.addAll([11, 13, 14]);
print(odd_list);

¥

[1,3,5,7,9]
[1,3,5,7,9,11, 13, 14]



3. The insert() Method

The insert() method provides the facility to insert an element at specified index position. We can
specify the index position for the value to be inserted in the list.

void main() A
List 1st = [3, 4, 2, 5];
print(lst);

lst.insert(2, 10);
print(1lst);

[3, 4, 2, 5]
[3, 4, 10, 2, 5]




4. The insertAll() Method

The insertAll() function is used to insert the multiple value at the specified index position. It accepts
Index position and list of values as an argument.

void main() {
List 1st = [3, 4, 2, 5];
print(lst);

lst.insertAll(e, [6, 7, 10, 9]);
print(lst);

[3, 4, 2, 5]
[6, 7, 10,9, 3, 4, 2, 5]




Removing List Elements
Dart provides following functions to remove the list elements.

* remove()

It removes one element at a time from the given list. It accepts element as an argument. It removes
the first occurrence of the specified element in the list if there are multiple same elements. The
syntax is given below. list_ name.remove(value)

* removeAt()

It removes an element from the specified index position and returns it. The syntax is given below.

list_ name.removeAt(int index)

* removelLast()

The removelLast() method is used to remove the last element from the given list. The syntax is
given below. list_name.removelast()
* removeRange()

This method removes the item within the specified range. It accepts two arguments - start
Index and end index. It eliminates all element which lies in between the specified range. The syntax
IS given below. list_name. removeRange();



Dart Iterating List elements
Dart List can be iterated using the forEach method.

void main() {
var listl = [ s 1;
print( E
listl.forEach((item) {

print("${1listl.indexOf(item item");
1)

lterating the List Element
0: Smith

1: Peter

2: Cruise



Dart Iterating List elements
Using iterator property to get Iterator that allows iterating.

void main() {
var listl = , ,
print( )
var listIterator = listl.iterator;

while (listIterator.moveNext()) {
print(listIterator.current);

¥

lterating the List Element
Smith

Peter

Cruise




Dart Iterating List elements
Using method

void main() {
var listl = [
print(
listl.every((item) {

print(item);
return true;

});

lterating the List Element
Smith

Peter

Cruise


https://api.dartlang.org/stable/dart-core/Iterable/every.html

Dart Iterating List elements
Using simple for-each loop

void main() {
var listl = [
print(
for (var item in listl) {

J

print(item);
}

lterating the List Element
Smith

Peter
Cruise



Dart Iterating List elements
Using for loop with item index

void main() {
var listl = [ , , 1;
print( E
for (var i = @0; i < listl.length; i++) {

print(listl[i]);
}

lterating the List Element
Smith

Peter

Cruise



Combine Lists in Dart

There are 5 ways to combine two or more list:

1. Using addALl() method to add all the elements of other lists to the existing list

void main() {

List 11 I
List 12 I

11.addA11(12);

print(11);

¥

[Welcome, to, Dart]



2. Creating a new list by adding two or more list using from and addAll() method of list

main() A

List 11
List 12

var newList = new
List.from(11l)..addA11(12);

print(newlList);

¥

[Welcome, to, Dart]



3. Creating a new list by adding two or more list using expand() method of list
We can add all the elements of the list one after another to a new list by the use of expand()
method in Dart. This is generally used to add more than two lists together.

main() {

List 11 1;
List 12 1;
List 13 1;

var newList = [11, 12, 13].expand((x) => x).tolList();

print(newlList);

[Welcome, to, Dart]



4. Using + operator to combine list
We can also add lists together by the use of + operator in Dart. This method was introduced
in the Dart 2.0 update.

main() {

List 11 1;
List 12 1;
List 13 1;

var newList = 11 + 12 + 13;

print(newlList);

[Welcome, to, Dart]



5. Using spread operator to combine the list
As of Dart 2.3 update, one can also use the spread operator to combine the list in Dart.

main() {

List 11
List 12
List 13

var newlList = [...

print(newlList);

[Welcome, to, Dart]



Dart Sets

The Dart Set is the unordered collection of the different values of the same type. It has much
functionality, which is the same as an array, but it is unordered. Set doesn't allow storing the
duplicate values. The set must contain unique values.

It plays an essential role when we want to store the distinct data of the same type into the single
variable. Once we declare the type of the Set, then we can have an only value of the same type. The
set cannot keep the order of the elements.

Dart Initializing Set

Dart provides two methods to declare/initialize an empty set. The set can be declared by using the
{} curly braces proceeded by a type argument, or declare the variable type Set with curly braces {}.
The syntax of declaring set is given below.

var setName = <type>{}; void main() {

Or print(

Set<type> setname = {}; < > hames =
print(names);

}




Add Element into Set

Dart provides two methods add() and addAll() to insert an element into the given set.
The add() method is used to add the single item into the given set. It can add one at a time when
the addAll() method is used to add the multiple elements to an existing set.

void main() {
print(
var names = A ,

var emp = <String>{};
emp.add( );
print(emp);

Insert element into the Set
{Jonathan}

emp.addAll(names);
print(emp); {Jonathan, James, Ricky, Adam}




Access the Set Element

Dart provides the elementAt() method, which is used to access the item by passing its specified
Index position. The set indexing starts from the 0 and goes up to size - 1, where size is the number of
the element exist in the Set. It will throw an error if we enter the bigger index number than its size.

void main() {
print(
var names = {
print(names);

var X = names.elementAt(2);
print(x);

Access element from the Set
{James, Ricky, Adam}
Adam



Dart Finding Element in Set

Dart provides the contains() method, which is used to find an element in the set. It accepts the single
item as an argument and return the result in Boolean type. If the given element present in the set, it
returns true otherwise false.

void main() {
print(
var names = <String>{

if (names.contains(

print( )5
} else {

print(
}

¥

Example - Find Element in the given Set
Element Found



Dart Remove Set Element

The remove() method is used to eliminate or remove an element from the given set. It takes the value
as an argument; the value is to be removed in the given set.

void main() {
print(
var names = <String>{
print(

names.remove ( );
print(

Example - Remove Element in the given Set
Before remove : {Peter, John, Ricky}
After remove : {John, Ricky}



Dart Remove All Set Element
We can remove entire set element by using the clear() methods. It deletes or removes all elements to

the given set and returns an empty set.

void main() A
print(
var names = <String>{

names.clear();
print(names);

¥

Example - Remove All Element to the given Set

U



Dart Iterating Over a Set Element
In Dart, the set element can be iterated using the forEach and for in methods as following

void main() {
var names = <String>{

names.forEach((value) {
print( value');

})s

for (var value in names) {
print( value');

¥

Value: Peter
Value: John
Value: Ricky



Dart Set Operations

Dart Set provides the facility to perform following set operations. These operations are given below.
Union - The union is set to combine the value of the two given sets a and b.

Intersection - The intersection of the two set a and b returns all elements, which is common in both sets.
Subtracting - The subtracting of two sets a and b (a-b) is the element of set b is not present in the set a.

void main() {
var x = <int>{1e, 11, 12, 13, 14, 15};
var 'y <int>{12, 18, 29, 43};
var z <int>{2, 5, 10, 11, 32};

print( ); Example - Set Operations

X uniony is -

{10,11,12,13, 14,15, 18, 29, 43}
X intersection y is -

{12}

y difference z is -

{12,18, 29, 43}

print( );

print(x.union(y));

print(
print(x.intersection(y));

print(
print(y.difference(z));




Dart Set Properties
The few properties of the Dart set as follows.

Properties Explanations

first It is used to get the first element in the given set.

iIsEmpty If the set does not contain any element, it returns
true.

isNotEmpty If the set contains at least one element, it returns
true

length It returns the length of the given set.

last It is used to get the last element in the given set.

Single It is used to check whether a set contains only

one element.



Convert Set to List

The Set object can convert into the List Object using the tolList() method.
The syntax is as follows.

Syntax -
1.List<type> <list_name> = <set_name>. tolList();

Note - The type of List must be the same as the type of Set.

main() {

11 = [1J 2, 3, 4, 5]5
{1, 2, 3, 4, 5}

var newSet = 11.toSet();

print(newSet);

¥




Dart Map

Dart Map is an object that stores data in the form of a key-value pair. Each value is associated with
Its key, and it is used to access its corresponding value. Both keys and values can be any type. In
Dart Map, each key must be unique, but the same value can occur multiple times. The Map
representation is quite similar to Python Dictionary. The Map can be declared by using curly braces
{} ,and each key-value pair is separated by the commas(,). The value of the key can be accessed by
using a square bracket [ ].

Declaring a Dart Map

Dart Map can be defined in two methods.

Using Map Literals

To declare a Map using map literal, the key-value pairs are enclosed within the curly braces "{}" and
separated by the commas.

Map a = {}; void main() {
var b ={}; var student =

Map ¢ = new Map(); print(student);
var d = new Map(); }




Using Map Constructor

To declare the Dart Map using map constructor can be done in two ways. First, declare a map
using map() constructor. Second, initialize the map.

void main() A
var student = new Map();
student| ] = K
student| =

student|
student|
print(student);

{name: Tom, age: 23, course: DataBase, Branch: Computer Science}



Map Methods
The commonly used methods are given below.

» addAll() - It adds multiple key-value pairs of other.

void main() {
Map student = { X
print( student}');

student.addAll({
print(

Map :{name: Tom, age: 23}
Map after adding key-values :{name: Tom, age: 23, dept: Civil, email: tom@xyz.com}



» remove() - It removes the key and its associated value If it exists in the given map.

void main() {
Map student = { X
print( student}');

student.remove( );
print( student}');

Map :{name: Tom, age: 23}
Map after removing given key :{name: Tom}



» clear() - It eliminates all pairs from the map.

void main() {
Map student = { X
print( student}');

student.clear();
print( student}');

}

Map :{name: Tom, age: 23}
Map after removing all key-values :{}



» forEach() - It is used to iterate the Map's entries. The syntax is given below.

void main() {
Map student = {

J

print( student}');
student.forEach((k, v) => print(

¥

Map :{name: Tom, age: 23}
name: Tom
age: 23



Map Properties
The dart:core:package has Map class which defines following properties.

Properties Explanation
Keys It is used to get all keys as an iterable object.
values It is used to get all values as an iterable object.
Length It returns the length of the Map object.
iSEmpty If the Map object contains no value, it returns true.

isSNotEmpty If the Map object contains at least one value, it returns true.



1.Numbers:
eint: Represents integer values.
‘Example: int age = 25;
edouble: Represents floating-point numbers with decimal places.
‘Example: double height = 1.75;
2.Strings:
*String: Represents a sequence of characters.
‘Example: String name = "John Doe";
3.Booleans:
ebool: Represents a logical value, either true or false.
‘Example: bool isStudent = true;
4.Lists:
oList: Represents an ordered collection of objects.
‘Example: List<int> numbers = [1, 2, 3, 4, 5];
5.Maps:
*Map: Represents a collection of key-value pairs.
‘Example: Map<String, int> studentGrades = {'John': 85, 'Jane": 92};
6.Sets:
Set: Represents an unordered collection of unique objects.
‘Example: Set<int> uniqueNumbers = {1, 2, 3, 4, 5};



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

