
Introduction to Dart
Programming Language

.سة والسقوطانت تتعلم بالممار. انت لا تتعلم المشي باتباع القواعد

WHY USE DART?

• Dart is an object-oriented programming (OOP) language.

• class-based style.

• uses a C-style syntax.

What are some of the benefits of using Dart?

− Dart is ahead-of-time (AOT) compiled to native code. AOT compilation is

used when compiling your app for release mode (such as to the Apple App

Store and Google Play).

− Dart is just-in-time (JIT) compiled, making it fast to display your code

changes such as via Flutter’s stateful hot reload feature.

➢ Dart is a client-optimized language for developing fast apps on any
platform.

➢Dart is the open-source programming language originally

developed by Google.

➢ It is meant for both server side as well as the user side.

➢ The Dart software development kit (SDK) comes with its compiler

– the Dart VM and a utility dart2js which is meant for

generating Javascript equivalent of a Dart Script so that it can be

run on those sites also which don’t support Dart.

➢ Dart is Object-oriented language and is quite similar to that

of Java Programming.

➢Dart is extensively use to create single-page websites and web-

applications. Best example of dart application is Gmail.

➢ Dart has built-in sound null safety. This means values can’t be null
unless you say they can be.

First Code in Dart:
In dart main() function is predefined method and acts as the entry point to the application.

A dart script needs the main() method for execution of the code. The program code goes

like this:

void main() {

 print("Welcome to Dart");
}

Output:

Welcome to Dart

Execution of program:
1.Online Compiler: The online compiler which support Dart is Dart Pad.
2.IDE: The IDEs which support Dart are VsCode, Eclipse, etc.
3.The dart program can also be compiled through terminal by executing the code dart
file_name.dart.

https://dartpad.dartlang.org/

Comments are a set of statements that are not meant to be executed by the compiler. They provide

proper documentation of the code.

Types of Dart Comments:

1.Dart Single line Comment.

2.Dart Multiline Comment.

3.Dart Documentation Comment.

1. Dart Single line Comment: Dart single line comment is used to comment a line until line break

occurs. It is done using a double forward-slash (//).

void main()
{
double area = 3.14 * 4 * 4;
// It prints the area
// of a circle of radius = 4
print(area);
}

2. Dart Multi-Line Comment: Dart Multiline comment is used to comment out
a whole section of code. It uses ‘/*’ and ‘*/’ to start and end a multi-line
comment respectively.

void main()
{
var lst = [1, 2, 3];
/*
It prints
the whole list
at once
*/
print(lst);
 }

3. Dart Documentation Comment
The document comments are used to generate documentation or reference for a project/software
package. It can be a single-line or multi-line comment that starts with /// or /*. We can use /// on
consecutive lines, which is the same as the multiline comment. These lines ignore by the Dart
compiler expect those which are written inside the curly brackets. We can define classes, functions,
parameters, and variables. Consider the following example.

1.void main(){
2. ///This is
3. ///the example of
4. ///multi-line comment
5. ///This will print the given statement on screen.
6. print("Welcome to Dart");
7.}

Dart – Variables
A variable name is the name assign to the memory location where the user stores the data and that

data can be fetched when required with the help of the variable by calling its variable name. There

are various types of variable which are used to store the data. The type which will be used to store

data depends upon the type of data to be stored.

Syntax: To declare a variable:

type variable_name;

Syntax: To declare multiple variables of same type:

type variable1_name, variable2_name, variable3_name,variableN_name;

Type of the variable can be among:

1. Integer 2. Double 3. String 4. Booleans 5. Lists 6. Maps

Dart – Variables

void main() {
 int x1 = 10; // Declaring and initializing a variable
 double x2 = 0.2; // Declaring another variable

 bool x3 = false;
 // Declaring multiple variable
 String x4 = "0", x5 = "Welcome to Dart";
 // Printing values of all the variables
 print(x1); // Print 10
 print(x2); // Print 0.2
 print(x3); // Print false
 print(x4); // print 0
 print(x5); // Print Welcome to Dart

}

10
0.2
false
0
Welcome to Dart

Dart – Variables

Dart var type

In Dart, when a variable is declared as a var type, it can hold any value such as int and double.

The value of a var variable can not change within the program once it is initialized at declaration.

Syntax

var variable_name

void main() {
 var a; // declaring a variable of type var
 a = 40; // initializing variable a
 print(a);

 a = "Dart"; // reassigning string value to `a`
 print(a);

 a = 10.4; // reassigning double value to `a`
 print(a);
}

40
Dart
10.4

Dart – Variables cont…

Let’s try initializing at the point of declaring the variable and then reassigning a value to it.

void main() {
 var a = 40;
 print(a);

 a = "Dart";
 print(a); // Error: A value of type 'String' can't be assigned to a

variable of type 'int'
}

If we initialize a variable of type var at the point of declaration, we can’t reassign a value to it.

Dynamic type variable in Dart:

This is a special variable initialized with keyword dynamic. The variable declared with this data

type can store implicitly any value during running the program. It is quite similar to var datatype in

Dart, but the difference between them is the moment you assign the data to variable with var

keyword it is replaced with the appropriate data type.

void main() {
 // Assigning value to str variable
 dynamic str = "Hello";

 // Printing variable str
 print(str);

 // Reassigning the data to variable and printing it
 str = "3.14157";
 print(str);

}

Hello
3.14157

Final And Const Keyword in Dart:
These keywords are used to define constant variable in Dart . once a variable is defined using these

keyword then its value can’t be changed in the entire code. These keyword can be used with or

without data type name.

void main() {
// Assigning value to v1 variable without datatype
 final v1 = "Hello";
// Printing variable v1
 print(v1);

// Assigning value to v2 variable with datatype
 final String v2 = "Hello Again!!";
// Printing variable v2
 print(v2);
}

Hello
Hello Again!!

Use final when you need variables that cannot be reassigned but can be computed at
runtime. Use const for values that are known at compile time to enhance performance and
ensure immutability.

Conditions to write variable name or identifiers are as follows:

1.Variable name or identifiers can’t be the keyword.

2.Variable name or identifiers can contain alphabets and numbers.

3.Variable name or identifiers can’t contain spaces and special characters, except

 the underscore(_) and the dollar($) sign.

4. Variable name or identifiers can’t begin with number.

Keywords in Dart:
Keywords are the set of reserved words which can’t be used as a variable name or identifier

because they are standard identifiers whose function are predefined in Dart.

Operators in Dart

The operators are special symbols that are used to carry out certain operations on the operands.

The Dart has numerous built-in operators which can be used to carry out different functions, for

example, ‘+’ is used to add two operands. Operators are meant to carry operations on one or two

operands.

1. Arithmetic Operators:

This class of operators contain those operators which are used to perform arithmetic operation on

the operands. They are binary operators i.e they act on two operands. They go like this:

Operator Symbol Operator Name Operator Description

+ Addition Use to add two operands

– Subtraction Use to subtract two operands

-expr Unary Minus It is Use to reverse the sign of the expression

* Multiply Use to multiply two operands

/ Division Use to divide two operands

~/ Division
Use two divide two operands but give output in

integer

% Modulus Use to give remainder of two operands

2. Relational Operators:
This class of operators contain those operators which are used to perform relational operation on the

operands. It goes like this:

Operator Symbol Operator Name Operator Description

> Greater than Check which operand is bigger and give result as boolean expression.

< Less than Check which operand is smaller and give result as boolean expression.

>= Greater than or equal to
Check which operand is greater or equal to each other and give result as

boolean expression.

<= less than equal to
Check which operand is less than or equal to each other and give result as

boolean expression.

== Equal to
Check whether the operand are equal to each other or not and give result as

boolean expression.

!= Not Equal to
Check whether the operand are not equal to each other or not and give

result as boolean expression.

3. Type Test Operators:

This class of operators contain those operators which are used to perform comparison on the

operands. It goes like this:

Operator Symbol Operator Name Operator Description

is is Gives boolean value true as output if the object has specific type

is! is not
Gives Boolean value false as output if the object has specific

type

4. Assignment Operators:
This class of operators contain those operators which are used to assign value to the operands.

Operator Symbol Operator Name Operator Description

= Equal to Use to assign values to the expression or variable

??= Assignment operator Assign the value only if it is null.

void main() {
 int a = 5;
 int b = 7;
 // Assigning value to variable c
 var c = a * b;
 print(c);
 var d; // Assigning value to variable d
 print(d ??= a + b);
 // Again, trying to assign value to d
 d ??= a - b; // Value is not assign as it is not null
 print(d); }

35
12
12

5. Logical Operators:

This class of operators contain those operators which are used to logically combine two or more

conditions of the operands. It goes like this:

Operator Symbol Operator Name Operator Description

&& And Operator
Use to add two conditions and if both are true than it will

return true.

|| Or Operator
Use to add two conditions and if even one of them is true than

it will return true.

! Not Operator It is use to reverse the result.

6. Conditional Operators:
This class of operators contain those operators which are used to perform comparison on the operands.

Operator Symbol Operator Name Operator Description

condition ? expersion1 :

expersion2

Conditional

Operator

It is a simple version of if-else statement. If the condition

is true than expersion1 is executed else expersion2 is

executed.

expersion1 ?? expersion2
Conditional

Operator

If expersion1 is non-null returns its value else returns

expression2 value.

void main() {
 int a = 5;
 // Conditional Statement
 var c = (a < 10) ? "Statement is Correct" : "Statement is Wrong";
 print(c);
 // Conditional statement
 int? n;
 var d = n ?? "n has Null value";
 print(d);
 n = 10; d = n;
 print(d);}

Statement is Correct
n has Null value
10

Standard Input in Dart:
In Dart programming language, you can take standard input from the user through the console via

the use of readLineSync() function. To take input from the console you need to import a library,

named dart:io from libraries of Dart.

About Stdin Class:
This class allows the user to read data from standard input in both synchronous and asynchronous

ways. The method readLineSync() is one of the methods used to take input from the user.

import 'dart:io';
void main() {
 print("Enter your name?");
 // Reading name from user
 String? name = stdin.readLineSync(); // null safety in name string

 // Printing the name
 print("Hello, $name! \n Welcome to Dart!!");

}

Taking a string input from user:

Taking integer value from user:

import 'dart:io';

void main() {
 // Asking for favourite number
 print("Enter your favourite number:");

// Scanning number
 int? n = int.parse(stdin.readLineSync()!);

// Here ? and ! are for null safety

 // Printing that number
 print("Your favourite number is $n");

}

Standard Output in Dart:
In dart, there are two ways to display output in the console:

1.Using print statement.

2.Using stdout.write() statement.

Printing Output in two different ways:

import 'dart:io';

void main() {
 // Printing in first way
 print("Welcome to Dart! // printing from print statement");

 // Printing in second way
 stdout.write("Welcome to Dart! // printing from stdout.write()");

}

Note:
The print() statement brings the cursor to next line while stdout.write() don’t bring the
cursor to the next line, it remains in the same line.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

