
259

Appendix A

Dart Cheat Sheet

This appendix is by no means meant to be a comprehensive Dart reference. Nor is it an exhaustive review of every
language feature covered in the book. Instead, it is meant to be a quick-reference guide to the core language and some
of the most commonly used classes in the standard library. If you’ve read the whole book, you will have seen all of this
material before. If the material of a particular section is covered wholly in a chapter or two, then those chapters are
listed in parentheses after the topic. The purpose of this appendix is to quickly give you an example of how something
may appear syntactically. It is not meant to explain “why.” For that, you’ll have to read the book! There is no new
material in this appendix. All of the content has been covered in the main text in far greater depth.

The Basics
Dart’s basic syntax is straightforward, consistent, and similar to that of other popular languages, such as C, JavaScript,
Java, and C#.

Declaring and Initializing Variables (Chapter 3)
Variables are declared in Dart optionally using types.
 
var m; // no type specified
int n; // n is specified as an int
 

When they are declared, variables can also be initialized.
 
var m = 4;
int n = 5;
 

Multiple variables of the same type can be declared at once.
 
int n = 5, o = 88, p; // p is not initialized with a value
 

The new operator is used for initializing a new instance of a class. After a class is initialized, its constructor is
immediately called. Parameters to the constructor are passed at initialization time.
 
Point p = new Point(24, 36);

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A ■ Dart Cheat Sheet

260

Literals (Chapter 3, Chapter 6)
Literals are used for creating objects, based on specific predetermined values. Literal syntax exists for Dart’s core built-
in types (see Table A-1).

Table A-1.  Fundamental Dart Types That Can Be Created with Literals

Type Description Example Literals

int Integers 5, -20, 0

double Floating-Point Numbers 3.14159, -3.2, 0.00

String Strings "hello", "g", "To be or not to be?"

bool Booleans true, false

List Lists (Chapter 6) [1,2,3], ["hi", "bye"]

Map Maps (Chapter 6) {"x": 5, "y":2}

Table A-2.  Arithmetic Operators

Operator Description Example

++ Increment integer by 1 x++;
++x;

-- Decrement integer by 1 x--;
--x;

+= Increment integer by arbitrary amount x += 34; // increment x by 34

* Multiplication x = y * 5;

/ Division x = 6 / 3;

~/ Integer Division x = 6 ~/ 4; // x is 1

+ Addition x = y + 2;

- Subtraction x = 20 – 4;

% Remainder (modulo) x = 6 % 4; // x is 2

Common Operators
Dart’s built-in operators provide the backbone of the language (see Tables A-2, A-3, and A-4). There are more
operators than those covered here, but these are the ones that were examined in this book. Dart also allows operator
overloading, in which operator behavior for a particular class is specified (see Chapter 12).

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A ■ Dart Cheat Sheet

261

Table A-3.  Operators That Return Boolean Values

Operator Description Example

== Equal to if (x == y) {...}

!= Not equal to if (x != y) {...}

> Greater than if (x > y) {...}

< Less than if (x < y) {...}

>= Greater than or equal to if (x >=y) {...}

<= Less than or equal to if (x <= y) {...}

! Not if (!x) {...}

|| Logical Or if (x || y) {...}

&& Logical And if (x && y) {...}

is Check the type of an object if (x is Element) {...}

Table A-4.  Other Operators

Operator Description Example

. Access variables/properties
and call methods on objects

y = x.children;
x.executeTimely();

.. Cascade operator –lets you make
multiple calls on the same object

x = new Car()
..resetOdometer()
..paintRed()
..oilLife = 100.0;

+ String concatenation
(when used between two
String objects)

x = "Hello" + "there!"; // x is "Hello there!"

[] Index into List objects or
Map objects

x[2] = 34; // sets element 2 of a List, x, to 34
y["gallons"] = 34; // sets the value associated
with the key "gallons" in a Map, y, to 34.

() Call function myFunction();

= Assignment operator x = 5;

as Cast an object from
one type to another

(x as ImageElement).src = "...";

? Conditional operator—if the
statement is true then returns first
alternative; otherwise, second

hot = (temp > 75) ? true : false;

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A ■ Dart Cheat Sheet

262

Control Structures (Chapter 3)
if-statements are used for branching, based on the validity of a particular condition.
 
if (j > 5) { // execute following lines if statement in () is true
...
} else if (j < 2) { // if first statement was false and this statement is true then:
...
} else { // executed only if all other statements were false
...
}
 

switch-statements are convenient when branching correctly would require many else-if-statements.
 
switch (x) {
 case 5:
 ...
 break;
 case 6:
 ...
 break;
 default:
 ...
 break;
}
 

The ? operator is similar in concept to a very short if-statement. If the statement before the ? evaluates to true,
then the first statement after it is evaluated. Otherwise, the second statement after it (the two statements are divided
by a :) is evaluated.
 
String casualPants = (temp > 75) ? "shorts" : "jeans";

Loops (Chapter 3, Chapter 6)
for-loops are probably the most commonly used loops. They are declared with a setup step; conditional step; and
step to be completed on each loop iteration (for (setup step; conditional step; iteration step)). The setup
step is run before the loop’s first iteration. The conditional step is executed once at the beginning of each iteration.
The last step is executed after each loop iteration. The loop continues to iterate until the conditional step is false.
 
for (int i = 0; i < 10; i++) {...}
for (Cell cell = new Cell(); cell.color != blue; cell.blink()) {...}
 

while-loops keep executing until a condition is no longer true. A do-while-loop is like a while-loop, except its
condition is evaluated after each iteration, instead of before.
 
while (x < 5) {...}
do {...} while (x < 5);
 

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A ■ Dart Cheat Sheet

263

for-in-loops are used for going through the contents of an Iterable. All of the collection classes that come with
the Dart SDK implement Iterable.
 
List j = [1, 5, 9];
for (int x in j) {
 print(x); // will print 1 then 5 then 9
}

Numbers
int is the class of integers, and double is the class for floating-point numbers. Both int and double are subclasses of
num. Both int and double provide static parse() methods for intepreting String objects as their respective type of
numbers. They usually should be wrapped with exception handling code, in case something goes wrong, such as a
FormatException.
 
String inTemp;
double userAnswer;
inTemp = stdin.readLineSync();
try {
 userAnswer = double.parse(inTemp);
} on FormatException { // uh oh, could not be turned into double
 print("Could not interpret input.");
 return;
}
 

A literal number is determined as an int or double, based on the presence of a decimal point.

Strings
Strings are used for representing text. In Dart, strings can contain any character specified in the Unicode specification,
which includes non-Latin characters, such as those found in Mandarin or Arabic. Strings are instances of the String
class, which has several useful methods for manipulating them. Both double quotes (") and single quotes (') can be
used for specifying String literals. Pick one or the other style and stick with it.

"hello" is equivalent to 'hello'.
Variable values can be interpolated within String literals, using $ for single variables and ${} for the result of an

expression.
 
String weather = "It's $temperature degrees and cloudy.";
String countdown = "It's ${2069 - year} years from the big anniversary.";
 

The String method split() divides a String by some character and returns a List.
 
List fruits = "apple,cherry,orange".split(","); // fruits is ["apple", "cherry", "orange"]
 

The trim() method removes whitespace on the edges of a String, and the toLowerCase() and toUpperCase()
methods are often useful when comparing one String to another. The + operator can be used for concatenating one
String to the end of another String.
 
String fullName = "John" + " " + "Smith"; // fullName will be "John Smith"

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A ■ Dart Cheat Sheet

264

Constants and Final Variables
The keyword const is used to specify that a variable’s value will not be changed after its initial declaration/
initialization. In other words, the value is wholly known at compile time, as opposed to runtime.
 
const WHEELS_ON_CAR = 4;
const List MY_FAVORITE_FLAVORS = const ["Apple", "Orange", "Grape"];
 

It is illegal to modify a constant after it has been declared. Constants can be optimized by the compiler. Final
variables are immutable. They cannot be changed after they are initialized, although unlike constants, they can be
initialized at runtime.
 
final int d = 5; // d can now not be changed again

Giving Programs Structure
In Dart, functions are first-class citizens. Dart has several superb built-in data structures. Dart is fully object-based
and has advanced object-oriented constructs. Dart provides ample facilities for giving programs structure.

Functions (Chapter 5)
Functions are defined with a title, parameters (if any), and a body. They can also specify their return type. Dart has
special syntactic sugar for short, one-line functions.
 
add(var x, var y) {
 return x + y; // control ends, value returned as return value
}
int add(int x, int y) {...} // specifies return type and parameter types
void doSomething() {...} // no return expected
int z = add(1, 2); // add() called with arguments 1, 2 for parameters x, y
int luckyNumber() => 7; // short syntax for single line functions, return is implied
 

Functions can appear within other functions. Anonymous functions are functions without a name.
 
void main() {
 String exclaimIt(String s) => s + "!"; // function within function
 print(exclaimIt("Hey"));
}
 

Optional parameters are parameters that do not need to be provided when a function is called. They are left up to
the discretion of the caller. Dart supports both positional and named optional parameters. Optional parameters can
have default values.
 
void repeat(String word, [int repetitions = 1, String exclamation = ""]) {
 for (int i = 0; i < repetitions; i++) {
 print(word + exclamation); // the + operator can concatenate strings
 }
} // could be called with repeat("Dog", 2, "!");
 

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A ■ Dart Cheat Sheet

265

void repeat(String word, {int repetitions: 1, String exclamation: ""}) {
 for (int i = 0; i < repetitions; i++) {
 print(word + exclamation); // the + operator can concatenate strings
 }
} // could be called with repeat("Dog", repetitions: 2, exclamation: "!");

Lists (Chapter 6)
List objects hold ordered, sequential data.
 
List l1 = []; // a blank List
List l2 = new List(); // also a blank List
List m = [1, 3, 5]; // List created using literal
 

You can index into a List to grab a specific element by its index. List objects are zero-indexed.
 
int v = m[1]; // v is 3
 

The add() method adds an element to the end of a List, while remove() can be used to remove a specific
element. Finally, removeLast() gets rid of the last element in a List. List objects can also be declared to contain a
specific type with <> syntax.
 
List<String> sList = ["hello", "goodbye"]; // specifying that sList will contain Strings.
sList.add("heya"); // sList is now ["hello", "goodbye", "heya"]
sList.remove("goodbye");
sList.removeLast(); // sList is ["hello"]

Maps (Chapter 6)
Map objects associate data (values) with identifiers (keys).
 
Map a = {}; // empty Map
Map c = new Map(); // also an empty Map
Map nameAge = {"Matt": 27, "John": 18, "Sarah": 17, "Larry": 80};
Map employees = {345: {"name": "Donald Smith", "Department": "Accounting", "Salary": 1000},
 220: {"name": "Mark Anderson", "Department": "Sales", "Salary": 950},
 572: {"name": "Elizabeth Brahmen", "Department": "Marketing", "Salary": 975}};
 

Values can be looked up or set via their keys, with similar syntax to indexing into a List.
 
Map productPrice = {"Gum": 0.95, "Soda": 1.05, "Chips": 1.99};
double gumPrice = productPrice["Gum"]; //gumPrice is now 0.95
productPrice["Cookie"] = 0.50; //a new key/value pair added to productPrice
productPrice["Soda"] = gumPrice; //the value for the key "Soda" is now 0.95
 

As with List objects, Map objects can have their contained types specified at declaration.
 
Map<String, double> productPrice = {"Gum": 0.95, "Soda": 1.05, "Chips": 1.99};

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A ■ Dart Cheat Sheet

266

Sets (Chapter 6)
Set objects are for storing unique, unordered data. A set cannot contain two identical elements.
 
Set blankSet = new Set(); // empty set
 

As with List objects, Set objects can have their contained types specified at instantiation time.
 
Set<String> jerryColors = new Set.from(["blue", "red", "green"]);
 

Set objects are a convenient way to check for duplicates in a List.
 
bool containsDuplicates(List l) {
 Set s = new Set.from(l); //create a new Set by converting the List
 if (s.length < l.length) {
 return true;
 }
 return false;
}

Defining Classes (Chapter 10, Chapter 11)
Classes are the fundamental building blocks of objects. They describe the methods, instance variables, and
properties that a class contains. Class definitions additionally specify the relationship between one class and another.
The constructor of a class is a special method that is used for initializing it (see Chapter 10 for some nuance on
constructors). A variable or method specified with an underscore (_) is “private” to the library in which the class
is defined.
 
class Dice {
 /// Instance Variables
 int _sides = 6;
 int _numberOfDice = 2;
 List<int> _values = [];
  
 /// Properties
 int get maximumValue => sides * numberOfDice;
 int get numberOfDice => _numberOfDice;
 int get sides => _sides;
 /// total is the sum of [_values]
 int get total => _values.fold(0, (first, second) => first + second);
  
 /// Constructor
 /// constructs a new Dice object, setting _sides and _numberOfDice
 Dice(this._sides, this._numberOfDice);
  
 /// Methods
 /// generate random values for [_values]
 void roll() {
 List newValues = [];
 Random rand = new Random();

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A ■ Dart Cheat Sheet

267

 for (int i = 0; i < numberOfDice; i++) {
 newValues.add(rand.nextInt(sides) + 1); // number from 1 to sides
 }
 _values = newValues;
 }
 
 /// print the values of the dice
 void printDice() => print(_values);
}
 

The abstract keyword is used for defining an abstract class (a class that can’t be instantiated and only serves as
a superclass of other classes). The extends keyword is used for defining a class as the subclass of another class. Only
one class can appear after extends.
 
abstract class Shape {
 double get perimeter;
 double get area;
 String get description;
}
 
class Circle extends Shape {
 double radius;
 Circle(this.radius);
  
 double get perimeter => radius * 2 * PI;
 double get area => PI * (radius * radius);
 String get description => "I am a circle with radius $radius";
}
 

Subclasses can refer to their superclass with the keyword super. this refers to the instance of the class currently
being worked from within. Classes implicitly define their own interfaces. One class can implement another class’s
interface, by using the implements keyword. A class can implement multiple interfaces.
 
class A {
 void silly() {
 print("A's Silly");
 }
}
 
class B {
 void awesome() {
 print("B's Awesome");
 }
}
 
class C implements A, B {
 void silly() {
 print("C's Silly");
 }
  

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A ■ Dart Cheat Sheet

268

 void awesome() {
 print("C's Awesome");
 }
}
 

A class can be cast from one class to another, using the as operator.
 
A c = new C();
(c as C).awesome();
 

Classes that have no constructors, are subclasses of Object, and make no calls to super can be used as mixins.
Mixins are functionality that is appended to another class. The with keyword is used to declare that a class uses a mixin.
 
class TimeStamp {
 DateTime creationTime = new DateTime.now();
 void printTimeStamp() {
 print(creationTime);
 }
}
 
class NewBorn extends Patient with TimeStamp {
 NewBorn(String name) : super(name);
}
 

NewBorn now has the printTimeStamp() method.

Libraries (Chapter 10)
Libraries are useful for packaging reusable Dart code. Defining a library compiles all of the files of the library into one
package. All of the import statements for the files included in the library are specified in the library declaration. Each
file includes part of library_name at its top.
 
library pig;
 
import "dart:math"; // for Random
import "dart:io"; // for stdin
 
part "dice.dart";
part "player.dart";
 

In dice.dart, you'll see:
 
part of pig;

Key Packages in the Standard Library
Dart comes with an extensive standard library, divided into logical bundled packages.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A ■ Dart Cheat Sheet

269

dart:html (Chapter 8)
dart:html is the library used for manipulating the Document Object Module (DOM). Element is a key class.
It is the base class for all of the classes in dart:html that are used to represent elements of an HTML document.
querySelector() is a function used for grabbing DOM elements by their CSS class, id attribute, or tag type, based on
their CSS selector. For example, a <div> tag with id fish could be grabbed with querySelector("#fish").

There are Element subclasses, such as ImageElement, CanvasElement, ButtonElement, etc., that represent specific
HTML tags. Each of these classes has properties that correspond to the specific attributes of the HTML tag in question.
In addition, all Element objects also have the methods getAttribute() and setAttribute() to manipulate them.
 
ImageElement ie = (querySelector("#fish_image") as ImageElement);
ie.src = "pike.png";
 

All Element objects have the generic properties text and innerHtml, which represent the string for display
contained in an Element and the HTML that represents the tags within it, respectively.
 
DivElement myDiv = new DivElement();
ButtonElement myButton = new ButtonElement();
myDiv.innerHtml = "My Strong Text";
myButton.text = "Click Me!";
 

One Element gets added as a child of another, using the append() method.
 
myDiv.append(myButton);
 

Events that occur within the browser to an Element can be captured by adding listeners to various named
ElementStream properties of an Element, such as onClick and onKeyDown, that process the events. Listeners are
functions that have an object representing the event in question as a parameter.
 
myButton.onClick.listen((MouseEvent me) => ...);
 

Changes to the DOM that are made from a Dart program are implemented in real time by the browser. dart:html
also includes extensive support for working with the HTML Canvas element. CanvasElement has a property,
context2D, that has numerous methods for drawing graphical primitives to the screen.
 
CanvasRenderingContext2D myCanvasContext = myCanvas.context2D;
myCanvasContext.setFillColorRgb(255,0,0); // RGB is Red, Green, Blue levels from 0-255 each
myCanvasContext.fillRect(myCanvas.width/2, myCanvas.height/2, 100, 200); // x, y width, height
 

Quick error messages can be displayed to the screen as dialog boxes, with window.alert().
 
window.alert("Error: invalid input.");
 

Table A-5 shows some common HTML tags/elements and their respective classes in dart:html.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A ■ Dart Cheat Sheet

270

dart:io (Chapter 4, Chapter 14)
Reading input from the command line is easy using stdin.readLineSync().
 
String temp = stdin.readLineSync(); // read in from the keyboard
 

Remember to check that the input is really formatted as you want it, before using it. The File class can be used
for reading files in a command-line application.
 
File file = new File("pandp.txt");
file.readAsString().then((String fileContent) => print(fileContent));

dart:math
The Random class is useful for generating random numbers, using its methods nextInt() and nextDouble().
 
Random rand = new Random();
int choice = rand.nextInt(3); // creates random integer between 0 and 2
double choice2 = rand.nextDouble(); // between 0.0 (inclusive) and 1.0 (exclusive)
 

The built-in constant PI represents the special number pi.
 
print(PI);
 

The class Point represents a point on a two-dimensional plane. Every Point object has an x and a y coordinate
expressed as properties. The Point class has its +, -, * and == operators overloaded.
 
Point a = new Point(2, 2);
Point b = new Point(4, 4);
b = b - a;
print(b); // prints Point(2, 2)

Table A-5.  Common HTML Tags and Their dart:html Element Subclasses

Tag Description dart:html Element

<a> Anchor (link) AnchorElement

<div> Div DivElement

 Span SpanElement

<p> Paragraph ParagraphElement

 Image ImageElement

<canvas> HTML Canvas CanvasElement

<input> Input form InputElement

 Unordered List UListElement

 Ordered List OListElement

 List Item LIElement

<button> Button ButtonElement

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A ■ Dart Cheat Sheet

271

a = a * 2;
print(a); // prints Point(4, 4)
a = b + a;
print(a); // prints Point(6, 6);
if ((b + b) == (a - b)) { // this is true
 print("Both sides of the equation hold equivalent values.");
}
 

Rectangle is a class for representing geometric rectangles. A Rectangle is initialized, based on its top-left corner,
width, and height. It has the very useful methods containsPoint() and intersects() to check its relationship with
points and other rectangles in the two-dimensional plane.

For comparing numbers, dart:math provides the convenience functions max() and min(), which operate on any
two num objects.

unittest (Chapter 13)
unittest does not come prepackaged with the Dart SDK. You need to add it to your pubspec.yaml before using it and
import it as import 'package:unittest/unittest.dart';.

The test() function is the core of unittest. It takes a String name for a test and a function defining a test. Calls
of expect() within a test define what it means to pass a test.
 
test("exclaim() test", (){
 String original = "I'm testing";
 expect(exclaim(original), equals("I'm testing!"));
});
 

expect() has several matchers like equals(), which is seen above. The first parameter of expect() is the object
being tested and the second is the matcher. Table A-6 shows several common matchers.

Table A-6.  Selected Common Matchers in the unittest Library

Matcher Parameter Type

isTrue None

isFalse None

isNull None

isNotNull None

isEmpty None

equals() Object

greaterThan() num

lessThan() num

closeTo() num, num (the latter is the delta allowed)

equalsIgnoringCase() String

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A ■ Dart Cheat Sheet

272

Multiple tests can be put together within a single group. Groups are defined using calls of the group() function.
 
group("exclaim tests", () {
 List testCases = [["Dog", "Dog!"], ["", "!"], ["H e l l o ", "H e l l o !"]];
 for (List testCase in testCases) {
 test(testCase[0], (){
 expect(exclaim(testCase[0]), equals(testCase[1]));
 });
 }
});
 

group() takes the name of the group as its first parameter and a function where tests are defined as its second
parameter. Groups are helpful for organization purposes. When tests are run, the tests within the same group will be
nicely outputted together.

dart:async (Chapter 8, Chapter 14)
The Timer class of dart:async is useful for scheduling things that need to occur periodically, or things that need to
occur just one time in the future.
 
Timer t = new Timer(const Duration(seconds: 2), () {
 clickedCard.src = CARD_BACK;
 tempClicked.src = CARD_BACK;
}); // one time
 

This Timer attempts to execute update() every 17 milliseconds. The actual accuracy of that time period depends
on whether other code running is easily interrupted.
 
Timer t = new Timer.periodic(const Duration(milliseconds:17), update);
 

dart:async is also the home of Future, a key class used throughout the Dart standard library. It is used for getting
the result of a computation after an asynchronous task has completed. The then() method of Future is called with a
function that will execute, once the Future completes, including its result as a parameter.
 
Future<String> f = HttpRequest.getString("pandp.txt");
f.then((String s) => print(s));
 

Future objects have built-in mechanisms for catching errors.
 
f.then((String s) => print(s)).catchError((Error e) => print(e.toString()));
 

Matcher Parameter Type

equalsIgnoringWhitespace() String

matches() RegExp

orderedEquals() Iterable

unorderedEquals() Iterable

containsValue() (used with a Map) Object

Table A-6.  (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A ■ Dart Cheat Sheet

273

Finally, Future objects can be strung together.
 
File file = new File("pandp.txt");
file.readAsString().then((String fileContent) {
 print(fileContent);
 return new File("pandp.txt").readAsString();
}).then((String fileContent) => print(fileContent));

dart:isolate (Chapter 14)
An isolate is an independent, concurrent process, with its own separate memory space. Isolates are spawned at the
point of a function call. They use ReceivePort and SendPort objects for intra-process communication. The SendPort
method send() is used for sending data across the wire. The ReceivePort method listen() asynchronously receives
data coming across the wire.
 
void calcPi(SendPort sp) {
 ...
 sp.send(pi); // send the result back
}
 
void main() {
 ReceivePort rp = new ReceivePort();
 rp.listen((data) { // data is what we receive from sp.send()
 print("Pi is $data");
 rp.close(); // we're done, close up shop
 });
 Isolate.spawn(calcPi, rp.sendPort); // start the Isolate
}

General Style Conventions
While style is not enforced, it’s good practice to follow style conventions when they make sense. This book broke from
general Dart style recommendations by declaring local variables with their type, instead of with the generic var. This
was done to ease the beginner’s type understanding and, subjectively, to improve code clarity. However, there were
many style conventions that were rigorously followed—and you should follow them too.

Class names should be written in uppercase CamelCase.•	

Class instance variables, properties, and method names should be written with lowercase •	
camelCase.

Constants should be written in ALL_UPPERCASE_WITH_UNDERSCORES_FOR_SPACES.•	

Variable names should be descriptive.•	

Code should be well-commented.•	

There should be spacing around operators.•	

Indentations should be two spaces.•	

When in doubt, use Dart Editor’s “Format” command, available in the contextual menu, •	
brought up by right-clicking in an editor window.

For more Dart style recommendations, check out the article “Dart Style Guide” by Bob Nystrom at
www.dartlang.org/articles/style-guide.

www.it-ebooks.info

http://www.dartlang.org/articles/style-guide
http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: Getting Set Up
	Getting the Tools
	Using Dart Editor
	Choosing a Suitable Work Environment
	How to Read This Book
	Utilizing the Web As You Learn
	Search Engines
	Stack Overflow
	Official Dart Sources
	Social Media
	Dart for Absolute Beginners Web Site

	Summary

	Chapter 2: Your First Dart Programs
	Hello, World!
	A Fancier Example
	Your First HTML Document
	Hello World Fancy in Dart

	Input and Output
	The Learning Curve
	Summary

	Chapter 3: Some Programming Fundamentals
	Code As Instructions
	Variables
	Operators
	Strings
	Control Structures
	More About Booleans
	Switch Statements

	Loops

	Summary

	Chapter 4: Five Small Programs to Showcase Fundamentals in Dart
	Number Guessing Game
	Temperature Converter
	The Monty Hall Problem
	Pi Calculator
	Math Test
	Summary

	Chapter 5: Functions
	What Is a Function ?
	Function Parameters
	The Locality of Variables
	Multiple Parameters

	Function Return Values
	Single-Line Functions
	Rock-Paper-Scissors
	Optional Parameters
	Positional Optional Parameters
	Named Optional Parameters

	Functions as First-Class Citizens
	Functions Within Functions
	Recursive Functions
	Fibonacci Sequence
	Factorial

	Summary

	Chapter 6: Data Structures
	Lists
	List Syntax
	Birthday Paradox
	Simple Blackjack

	Maps
	Map Syntax
	Caesar Cipher
	Baseball Statistics Exercise

	Sets
	Revised containsDuplicates()
	Great Set Use Cases

	Summary

	Chapter 7: How Does the Web Work?
	Retrieving a Web Site
	The Web’s Place on the Internet
	Defining a Web Site’s Look
	Non-HTML on the Web
	Web Browsers
	Domains, IP Addresses, and IP Routing
	A Little More HTTP
	A Full Web Transaction
	Summary

	Chapter 8: Using Dart to Interact with HTML
	The DOM
	Tagging the Tags
	Responding to Events from the DOM
	BMI Calculator

	Images
	Memory Game

	Drawing with an HTML Canvas
	HTML Canvas Basics
	Flying Pigs

	Summary

	Chapter 9: Hangman
	Word Scramble
	The HTML
	The Dart

	Hangman
	The Game Resources
	The HTML and CSS
	The Dart
	main( )
	restart( )
	chooseSecretWord( )
	clearBoard( )
	playLetter( )

	Halftime Review
	Chapter 1: “Getting Set Up”
	Chapter 2: “Your First Dart Programs”
	Chapter 3: “Some Programming Fundamentals”
	Chapter 4: “Five Small Programs to Showcase Fundamentals in Dart”
	Chapter 5: “Functions”
	Chapter 6: “Data Structures”
	Chapter 7: “How Does the Web Work?”
	Chapter 8: “Using Dart to Interact with HTML”

	Looking Forward
	Summary

	Chapter 10: Object-Oriented Programming Fundamentals
	What Is an Object ?
	Object Basics
	References to Objects and Instances

	Defining Classes
	Instance Variables
	Getters and Setters
	Methods
	Constructors
	Constructor Basics
	Named Constructors

	Pig
	Class Variables and Class Methods

	The Game of Life
	Summary

	Chapter 11: Object-Oriented Design
	Inheritance
	Abstract Classes
	Geometry Test

	Super
	Interfaces
	Interfaces Exposed
	Casting

	Mixins
	The Cascade Operator
	Alien Invaders
	Summary

	Chapter 12: Advanced Dart Concepts
	Operator Overloading
	The Point Class
	Overloading Operators in Your Own Classes
	Getting Back to the Point

	Generics
	Exceptions
	Working with Dart’s Built-in Exceptions
	Defining Your Own Exceptions

	Factory Constructors
	Assert
	Typedef
	Metadata
	Dart’s Built-in Annotations
	Defining Your Own Annotations

	Summary

	Chapter 13: Testing Your Work
	Including External Packages in Your Program
	Unit Testing
	Taking a unittest
	Grouping Unit Tests

	Tic-Tac-Toe
	Defining the Game
	Testing Tic-Tac-Toe

	Beta Testing
	Usability Testing
	Summary

	Chapter 14: Concurrency
	The Hardware Impetus for Parallelism
	Futures
	Using Futures with HttpRequest
	Using Futures with File
	Stringing Futures Together

	Isolates
	Starting Up an Isolate
	Communicating Between Isolates
	Calculate Pi Using an Isolate
	Progressive Pi

	The Dining Philosophers 3

	Summary

	Chapter 15: Tools of the Trade
	Git
	Git in a Nutshell
	Setting Up a Remote Repository
	Committing Changes to the Repository
	Pulling Changes

	Debugging Dart with Breakpoints
	Incorporating Open-Source Packages
	API Documentation
	Summary

	Chapter 16: Putting It All Together
	Constraint Satisfaction Problems
	Australian Map Coloring Problem
	How Is a Constraint Satisfaction Problem Solved?
	The constraineD Library
	Solving the Australian Map Coloring Problem Using constraineD

	Word Search
	Getting Started
	Search Words
	Facing Constraints
	Defining a Grid
	The Glue
	You’re Not Done Yet

	Summary

	Chapter 17: Where to Go from Here
	Advance Your Core Dart Skills
	Project Ideas
	Learn Polymer.dart and/or Angular.dart
	Server-Side Dart
	Working with Databases
	Learn Computer Science
	What Is Computer Science?
	Examples of Computer Science Problems in This Book

	Learn Another Language
	Python
	JavaScript
	C
	Scheme

	Learn How to Set Up a Web Server
	Learn Web Design
	Learn a WYSIWYG Web Design Tool
	Learn a Graphics Package
	Learn a CSS Framework

	Get Involved with the Dart Community
	Get in Touch with the Author
	Summary

	Chapter 18: Interview with Dart’s Creators
	Interview with Lars Bak and Kasper Lund
	Part 1. Dart’s Formulation and Intent
	Part 2. Dart As a First Programming Language

	Appendix A: Dart Cheat Sheet
	The Basics
	Declaring and Initializing Variables (Chapter 3)
	Literals (Chapter 3, Chapter 6)
	Common Operators
	Control Structures (Chapter 3)
	Loops (Chapter 3, Chapter 6)
	Numbers
	Strings
	Constants and Final Variables

	Giving Programs Structure
	Functions (Chapter 5)
	Lists (Chapter 6)
	Maps (Chapter 6)
	Sets (Chapter 6)
	Defining Classes (Chapter 10, Chapter 11)
	Libraries (Chapter 10)

	Key Packages in the Standard Library
	dart:html (Chapter 8)
	dart:io (Chapter 4, Chapter 14)
	dart:math
	unittest (Chapter 13)
	dart:async (Chapter 8, Chapter 14)
	dart:isolate (Chapter 14)

	General Style Conventions

	Appendix B: History of Web Programming
	Client Side
	Java Applets
	JavaScript
	VBScript
	Flash
	Silverlight
	Recent Developments

	Server Side
	CGI
	Perl
	PHP
	ASP
	Java
	Python
	Ruby
	JavaScript
	Trends

	Where Does Dart Fit In?
	Evolution of the Web Browser
	Microsoft and Netscape Duke It Out 13
	Firefox Emerges from the Ashes of Netscape
	Mobile and a Revitalized Browser Ecosystem

	Importance Today

	Appendix C: Dart Timeline
	Appendix D: Great Resources
	Dart
	Books
	Web Sites
	Articles

	HTML & CSS
	Books
	Web Sites

	A Second Programming Language
	Books
	Python
	JavaScript
	C
	Scheme

	Other
	Books

	Index

