2021-04-25

Chapter 7 OpenGL Part |l

* Hello Triangle

* Shaders

* Transformations

* Coordinate Systems
* Camera

* Summery

122

Hello Triangle

* In OpenGL everything is in 3D space, but the screen or window is
a 2D array of pixels so a large part of OpenGL's work is about
transforming all 3D coordinates to 2D pixels that fit on your
screen.

* The process of transforming 3D coordinates to 2D pixels is
managed by the graphics pipeline of OpenGL.




2021-04-25

Hello Triangle-cont.

* Note that the blue sections represent sections where we can inject
our own shaders.

VERTEX SHADER GEOMETRY SHADER

@ h 4 =
L ]
VERTEX DATA[] o 4 &
L3
o ~ < 4
S R A =
-ﬁ |
L1
Ll
L
J o e

FRAGMENT SHADER

124

Shaders

* Shaders are little programs that rest on the GPU. These programs are
run for each specific section of the graphics pipeline.

* In a basic sense, shaders are nothing more than programs
transforming inputs to outputs.

* Shaders are also very isolated programs in that they're not allowed to
communicate with each other; the only communication they have is
via their inputs and outputs.

125




2021-04-25

GLSL

* Shaders are written in the C-like language GLSL. GLSL is tailored for
use with graphics and contains useful features specifically targeted at
vector and matrix manipulation.

* Shaders always begin with a version declaration, followed by a list of
input and output variables, uniforms and its main function.

* Each shader's entry point is at its main function where we process
any input variables and output the results in its output variables.
Don't worry if you don't know what uniforms are, we'll get to those
shortly.

126

Vertex shader

* A vertex shader is a graphics processing function used to add special
effects to objects in a 3D environment by performing mathematical
operations on the objects' vertex data. Each vertex can be defined by
many different variables.

f#version 330 core
layout (location = 0) in vec3 aPos;

out vec4 vertexColor; //

void main()
{
L0y A/

127




2021-04-25

Fragment shader

* A Fragment Shader is the Shader stage that will process a Fragment
generated by the Rasterization into a set of colors and a single depth
value.

#version 330 core
out vec4 FragColor;
in vec4 vertexColor; /

main ()

FragColor = vertexColor;

128

Transformations

* Luckily, there is an easy-to-use and tailored-for-OpenGL mathematics
library called GLM.

* Most of GLM's functionality that we need can be found in 3 headers
files that we'll include as follows:

#include <glm/glm.hpp>
#incluc ylm/gtc/matrix_transform.hpp>

#include <glm/gtc/type_ptr.hpp>

129




2021-04-25

Transformations-cont.

* We add the following lines to the vertex shader code

uniform mat4 transform;

gl Position = transform * vec4(aPos, 1.0f);

* Here is how we use glm in action to rotate and scale

glm::mat4 trans = glm::mat4(1.0f);

trans = glm::rotate(trans, glm::radians(90.0f), glm::vec3(9.0, 0.0, 1.0));
trans = glm::scale(trans, glm::vec3(@.5, 0.5, 0.5));

130

Coordinate Systems

* There are a total of 5 different coordinate systems that are of
importance to us:

Local space (or Object space)

World space

View space (or Eye space)

Clip space

5. Screen space

* Those are all a different state at which our vertices will be

transformed in before finally ending up as fragments.

PwnN e

131




2021-04-25

Coordinate Systems-cont.

* To transform the coordinates from one space to the next coordinate
space we'll use several transformation matrices of which the most
important are the model, view and projection matrix.

- MODEL MATRIX w
1. LOCAL SPACE ACE

VIEW MATRIX

. - VIEWPORT TRANSFORM -

PROJECTION MATRIX

4. CLIP SPACE 5. SCREEN SPACE

132

Camera

* OpenGL by itself is not familiar with the concept of a camera, but we
can try to simulate one by moving all objects in the scene in the
reverse direction, giving the illusion that we are moving.

* To define a camera we need its position in world space, the direction
it's looking at, a vector pointing to the right and a vector pointing
upwards from the camera

(0,1,004

-X SRy -
1. Position 2. Direction 3. Right
133




2021-04-25

Summery

* OpenGL: a formal specification of a graphics APl that defines the layout and
output of each function.

* Viewport: the 2D window region where we render to.

* Graphics Pipeline: the entire process vertices have to walk through before ending
up as one or more pixels on the screen.

* Shader: a small program that runs on the graphics card. Several stages of the
graphics pipeline can use user-made shaders to replace existing functionality.

* Vertex: a collection of data that represent a single point.

* Vector: a mathematical entity that defines directions and/or positions in any
dimension.

* Matrix: a rectangular array of mathematical expressions with useful
transformation properties.

Summery-cont.

GLM: a mathematics library tailored for OpenGL.

* Local Space: the space an object begins in. All coordinates relative to an object's
origin.

» World Space: all coordinates relative to a global origin.

* View Space: all coordinates as viewed from a camera's perspective.

* Clip Space: all coordinates as viewed from the camera's perspective but with
projection applied. This is the space the vertex coordinates should end up in, as
output of the vertex shader. OpenGL does the rest (clipping/perspective division).

* Screen Space: all coordinates as viewed from the screen. Coordinates range from
0 to screen width/height.

* LookAt: a special type of view matrix that creates a coordinate system where all
coordinates are rotated and translated in such a way that the user is looking at a
given target from a given position.




