
SOFTWARE DESIGN PATTERN (CREATIONAL PATTERN)
LEC2: BUILDER.

BUILDER

 The builder pattern is a type of creational pattern that helps in building complex objects using

simpler objects. It provides a flexible and step-by-step approach towards making these objects and

keeps the representation, and the process of creation shielded.

 As mentioned in the Gang of four “Separate the construction of a complex object

from its representation so that the same construction process can create different

representations.”

THE CONCEPT

 Problem

 For example, let’s think about how to create a House object. To build a simple house, you need to construct four walls

and a floor, install a door, fit a pair of windows, and build a roof. But what if you want a bigger, brighter house, with a

backyard and other goodies (like a heating system, plumbing, and electrical wiring)?

 The simplest solution is to extend the base House class and create a set of subclasses to cover all combinations of

the parameters. But eventually you’ll end up with a considerable number of subclasses. Any new parameter, such as

the porch style, will require growing this hierarchy even more.

 There’s another approach that doesn’t involve breeding subclasses. You can

create a giant constructor right in the base House class with all possible

parameters that control the house object. While this approach indeed eliminates

the need for subclasses, it creates another problem.

 The constructor with lots of parameters

has its downside: not all the parameters

are needed at all times.

 SOLUTION

 The Builder pattern suggests that you extract the object construction code out of its own class and move it to

separate objects called builders.

 The Builder pattern lets you construct complex objects step by step. The Builder doesn’t allow other objects to

access the product while it’s being built.

WHEN TO USE BUILDER PATTERN

 Builder pattern was introduced to solve some of the problems with Factory and Abstract Factory design patterns

when the Object contains a lot of attributes.

 There will be issues with Factory and Abstract Factory design patterns when the Object contains a lot of attributes.

 Some of the parameters might be optional but in Factory pattern, we are forced to send all the parameters and optional parameters

need to send as NULL.

 If the object is heavy and its creation is complex, then all that complexity will be part of Factory classes that is confusing.

 We can solve the issues with large number of parameters by providing a constructor with required parameters and

then different setter methods to set the optional parameters. The problem with this approach is that the Object

state will be inconsistent until unless all the attributes are set explicitly.

 Builder pattern solves the issue with large number of optional parameters and inconsistent state by providing a way

to build the object step-by-step and provide a method that will actually return the final Object.

STRUCTURE & PARTICIPANTS

Builder
specifies an abstract interface for creating parts of a

Product object.

ConcreteBuilder
constructs and assembles parts of the product by

implementing the Builder interface.

provides an interface for retrieving the product.

Director (Executor)
constructs an object using the Builder interface.

Product
represents the complex object under construction.

WORK FLOW:

 The client creates the director object and configures it with the desired builder object.

 Director notifies builder whenever a part of product should be built.

 Builder handles requests from the director and adds parts to the product.

 The clients retrieves the product from builder.

EXAMPLE:

 In this example, the participants are IBuilder, Car, MotorCycle, Product, and Director. Car and MotorCycle are

implementing the IBuilder interface. IBuilder is used to create parts of the Product object where Product

represents the complex object under construction.

 The assembly process is described in Product. We can see that we have used the Linked List data structure in

Product for this assembly operation.

 Car and MotorCycle are the concrete implementations. They have implemented IBuilder interface. BuildBody(),

InsertWheels(), and AddHeadlights() are used to build the body of the vehicle, insert the number of wheels into it,

and add headlights to the vehicle. GetVehicle() will return the ultimate product.

 Finally, Director will be responsible for constructing the ultimate vehicle using the IBuilder interface. Director is

calling the same Construct() method to create different types of vehicles.

PRODUCT

IBUILDER

CAR & MOTORCYCLE

DIRECTOR

EXAMPLE:

OUTPUT:

PARTICIPANTS:

12/27/2023 LECTURE - 3 15

IBuilder

Car MotorCycle

Director

Product

PROS & CONS

 Pros

 Allows you to vary a product’s internal representation.

 Encapsulates code for construction and representation.

 Provides control over steps of construction process.

 Cons

 Any change in concrete class requires same change in Builder as well. If its required parameter then

change in client as well.

