

What is Software Testing?
Facebook Twitter WhatsApp LinkedIn

Human beings are prone to mistakes because of in-attention, incorrect
assumptions, carelessness, or inadequate system knowledge. This very
nature of humans makes software vulnerable to bugs, defects, and errors (we
will get to know these terms in detail in later posts). To prevent and correct
these issues, we need testing.

Traditionally software testing was done in a single phase, and that too only
once the implementation or coding used to get completed. But the increasing
complexity of software applications led to the evolution of testing.

So testing techniques have evolved over time, and testing activities are not
confined to a single phase. Instead, these were integrated with the different
phases of the software development life cycle.
In this blog post, we will walk you through the nitty-gritty of software testing.

What is Software Testing?
Software testing is the process of evaluating a system with the intent
of finding bugs. It is performed to check if the system satisfies its
specified requirements and quality standards. It evaluates the
system to validate its functionality.

Why is Software Testing Important?
Software Testing is an indispensable activity in SDLC because it uncovers any
bugs or errors early that can be addressed before releasing the system to the
market.

https://artoftesting.com/software-development-life-cycle-sdlc

The following are some significant reasons stating the importance of software
testing:

• It provides an assurance to the stakeholders that the product
works as intended.

• Delivering an untested product with avoidable defects to the
end-user/customer leaves a bad reputation for the development
company.

• The separate testing phase adds a confidence factor to the
stakeholders regarding the quality of the software under
development.

• Defects detected in the earlier phase of SDLC result in lesser cost
and resource utilization for defect resolution.

• The testing team adds another dimension to software
development by providing a different viewpoint to the product
development process.

• An untested software not only makes software error-prone but
also costs the customer business failure, like in the case of
Microsoft’s MP3 player – Zune’s crash.

•
The following are some real-world examples stating the importance of
software testing where bugs or errors proved expensive and life-threatening.

• Starbucks’ POS system had glitches. Hence, 60% of stores in the
United States and Canada were closed. For some time, the store
even served coffee for free, as customers were not able to
perform transactions.

• In 2015, a fighter plane F-35 had bugs that made it unable to
detect targets correctly.

• Due to a small software bug, China Airlines Airbus A300 crashed,
in which 264 innocents lost their lives.

• The costliest accident in history was a software bug in a military
satellite launch. It cost $1.2 billion.

• A software bug at a major US bank resulted in the credit of 920
million US dollars to 823 customers.

•

Who Conducts Software Testing?
Testing is/can be done by all technical and non-technical people associated
with software development. As testing is not a single process and a series of
phases, the following are people associated with it in different phases:

• Developer – Developers perform unit testing of the software and
ensure that the individual modules or components work correctly.

• Testers – Testers are the face of software testing. A tester verifies
the application’s functionality as a functional tester, checks its
performance as a performance tester, automates the functional
test cases, and creates test scripts as an automation tester.

• Test Managers/Lead/Architects – They develop and define
the test strategy and test plan documents.

• End Users – A group of end-users does the User Acceptance
Testing (UAT) to ensure the software is ready to release to the real
world.

•

How is Software Testing done?
Testing can be done both manually as well as using automation tools.

• Manual Testing – When performed manually, it is called Manual
Testing. It includes requirements verification, development of test
strategy and plan, test case preparation, test case execution,
defect creation, defect retesting, and finally, test report sharing
with all the relevant stakeholders.

• Automation Testing – When automated tools are used, it is
called Automation testing. It includes test script preparation and
test report generation using different tools like –
Selenium, Katalon Studio, QTP, etc.

•
In this type of testing, rerunning test scenarios is quick and easy. It
increases test coverage, improves accuracy, and significantly
saves time and money compared to manual testing.

https://artoftesting.com/unit-testing
https://artoftesting.com/test-strategy-document-template
https://artoftesting.com/test-plan-document-template
https://artoftesting.com/uat-testing
https://artoftesting.com/uat-testing
https://artoftesting.com/manual-testing
https://artoftesting.com/manual-testing
https://artoftesting.com/automation-testing
https://artoftesting.com/api-testing-using-katalon-studio

Some other types of software testing include functional and non-
functional.

Testing Type Example

Functional Testing

Unit testing

Integration testing

System testing

Acceptance testing

Regression testing

Non-Functional Testing

Performance testing

Load testing

Stress testing

Endurance testing

Volume testing

Security testing

Recovery testing

When do we start Software Testing?
Based on the software project and the selection of a specific SDLC model, the
testing activities can be performed in the different phases of the software life
cycle.

There is a misconception that testing is done only when some part of the
software is built. However, testing can (should) be started even before a
single line of code is written. It can be done in parallel with the development
phase, e.g., in the case of the V Model, development and testing activities are
integrated.

Development Phase Testing Activity

Requirement Design Acceptance test creation

Functional Specification Functional test case creation

Implementation Unit test case creation

Code Complete Test case execution

https://artoftesting.com/v-model-in-software-testing

V Model
What is V Model?
V model is also known as the Verification and Validation model. In the V
model, the testing phase goes in parallel with the development phase. Thus,
the testing phase starts right at the beginning of SDLC.

As we can see in the above diagram, the test activities start in parallel with
the development activities e.g. during the requirement analysis phase,
acceptance-test cases are prepared by the testing team; during the system
design phase, the system test case is prepared. Similarly, for each phase of
development, a corresponding QA activity is performed. Later, when the
deliverable gets ready, the QA artifacts are used to conduct the testing. Along
with that, each phase of the development phase is verified before moving to
the next phase.

Advantages of V Model
• Each phase of development is tested before moving to next

phase, hence there is a higher rate of success.
• It avoids defect leakage to the later phases as each phase is

verified explicitly.

• The model has clear and defined steps. So, it is easier to
implement.

• It is suitable for smaller projects where requirements are fixed.

Disadvantages of V Model
• The testing team starts in parallel with development. Hence, the

overall budget and resource usage increases.
• Change in requirement are difficult to incorporate.
• The working model of the software is only available in the later

phases of the development.
• It is not suitable for complex and large applications because of its

rigid process.

Test Strategy Document
April 29, 2023

Facebook Twitter WhatsApp LinkedIn

Hello friends, in this article, we will study test strategy documents, their
templates, and some tips to create a good test strategy document. But
before that let’s first study – what test strategy is.

What is test strategy?
As the name suggests, test strategy means strategy employed to test a
particular software application. In other words, a Test Strategy is an outline or
approach to the way testing will be carried out in the software development
life cycle. Its purpose is to define the exact process the testing team will follow
to achieve the organizational objectives from a testing perspective.

Test strategy approaches
The the different approaches to test strategy that are employed are-

1. Analytical approach – This approach is based on risk
analysis based on the project’s requirements and different
stakeholder’s input. Based on this risk analysis, a test strategy is
developed to plan, design, and prioritize the testing efforts.

2. Model-based approach – This approach uses various
statistical models for developing a test strategy.

3. Consultative approach – In this approach, a test strategy is
developed based on consultation with technology or domain
experts.

4. Methodical approach – This approach is simply based on
using a pre-defined set of testing approaches that may relate to
a particular type of application testing.

5. Dynamic or Heuristic approach – The heuristic approach

developed by James Basch is based on the exploratory techniques
instead of pre-planned.

6. Standard-compliant approach – With this approach the
test strategy is prepared based on the industry standards and
processes.

What is a test strategy document?
A test strategy document is a high-level document describing the
way testing will be carried out. In this, we document the test
objectives and set of guidelines for achieving those objectives. It is presented
by the project manager to all the stakeholders in the testing process. It can
have a scope of an entire organization or a particular project.

https://www.satisfice.com/download/heuristic-test-strategy-model
https://www.satisfice.com/download/heuristic-test-strategy-model

Test Plan
What is a Test Plan?
A Test Plan is a formal document derived from requirement documents like
Software Requirement Specification, Use Case documents, etc. It describes in
detail, the scope of testing and the different activities performed in testing.

It is generally prepared by a test manager and approved by the different
stakeholders of the application.

Features of a Test Plan
A Test Plan needs to address the following-

• The overall scope of testing
• Risk Analysis
• Test estimate
• Resource Requirement
• Tools used
• Scheduling, review, and analysis of test design activities
• Creation of test cases and test data
• Identification of test monitoring and test control activities

Difference Between Test Plan
and Test Strategy
Facebook Twitter WhatsApp LinkedIn

A test plan is a formal document derived from requirement
documents. It describes in detail, the scope of testing and the different
activities performed during testing.

Whereas, a test strategy is a high-level document describing the way
testing will be carried out in an organization. It basically aims at
providing a systematic approach to the software testing process.

Test Plan vs Test Strategy

Plan Test Strategy Test

A test plan describes in detail the scope of

testing and the different activities performed

in testing.

A test strategy is a high-level document

containing some guidelines about the way

testing will be carried out.

A test plan is specific to a particular project.
A test strategy is usually for a complete

organization.

It describes the whole testing activities in

detail – the techniques used, schedule,

resources, etc.

It describes the high-level test design

techniques to be used, environment

specifications, etc.

It is prepared by the test lead or test manager.
It is generally prepared by the project

manager.

A test plan document includes components

like – features to be tested, components not to

be tested, approach to testing, pass-fail

A test strategy document includes – scope,

, test environment tools testing test approach,

specifications, release control, risk analysis,

etc.

https://artoftesting.com/testing-tools

Plan Test Strategy Test

criteria, test deliverables, estimates,

assumptions, etc.

Test plans can be changed or updated. Test strategy is usually not changed.

It is about the details and specifics.
It is more about general approaches and

methodologies.

Levels of Testing

Facebook Twitter WhatsApp LinkedIn

Software testing can be performed at different levels of the software
development process. Performing testing activities at multiple levels help in
the early identification of bugs and better quality of software product. In this
tutorial, we will be studying the different levels of testing namely – Unit
Testing, Integration Testing, System Testing, and Acceptance Testing.

Unit Testing
• Unit Testing is the first level of testing usually performed by the

developers.
• In unit testing, a module or component is tested in isolation.
• As the testing is limited to a particular module or component,

exhaustive testing is possible.
• Advantage – Error can be detected at an early stage saving time

and money to fix it.
• Limitation – Integration issues are not detected in this stage,

modules may work perfectly on isolation but can have issues in
interfacing between the modules.

https://artoftesting.com/what-is-software-testing
https://artoftesting.com/unit-testing

Levels of Testing - Unit, Integration, System & Acceptance | ArtOfTesting

Integration Testing
• Integration testing is the second level of testing in which we test a

group of related modules.
• It aims at finding interfacing issues b/w the modules i.e. if the

individual units can be integrated into a sub-system correctly.
• It is of four types – Big-bang, top-down, bottom-up, and Hybrid.

1. In big bang integration, all the modules are first
required to be completed and then integrated. After
integration, testing is carried out on the integrated unit
as a whole.

2. In top-down integration testing, the testing flow
starts from top-level modules that are higher in the
hierarchy towards the lower-level modules. As there is a
possibility that the lower-level modules might not have
been developed while beginning with top-level modules.

So, in those cases, stubs are used which are nothing but
dummy modules or functions that simulate the
functioning of a module by accepting the parameters
received by the module and giving an acceptable result.

3. Bottom-up integration testing is also based on
an incremental approach but it starts from lower-level
modules, moving upwards to the higher-level modules.
Again the higher-level modules might not have been
developed by the time lower modules are tested. So, in
those cases, drivers are used. These drivers simulate the
functionality of higher-level modules in order to test
lower-level modules.

4. Hybrid integration testing is also called the
Sandwich integration approach. This approach is a
combination of both top-down and bottom-up

https://artoftesting.com/integration-testing

integration testing. Here, the integration starts from the
middle layer, and testing is carried out in both directions,
making use of both stubs and drivers, whenever
necessary.

System Testing
• System Testing is the third level of testing.
• It is the level of testing where the complete integrated application

is tested as a whole.
• It aims at determining if the application conforms to its business

requirements.
• System testing is carried out in an environment that is very similar

to the production environment.

Acceptance Testing
• Acceptance testing is the final and one of the most important

levels of testing on successful completion of which the
application is released to production.

• It aims at ensuring that the product meets the specified business
requirements within the defined standard of quality.

• There are two kinds of acceptance testing- alpha testing and
beta testing.

1. When acceptance testing is carried out by testers or
some other internal employees of the organization at the

developer’s site it is known as alpha testing.
2. User acceptance testing done by end-users at the end-

user’s site is called beta testing.

This concludes our tutorial on the different levels of testing. You can continue
with our Software Testing Tutorial course to study these levels of software
testing in detail, in the coming tutorials.

https://artoftesting.com/system-testing
https://artoftesting.com/acceptance-testing
https://artoftesting.com/software-testing-tutorial

Test Scenario – Definition,
Template and Examples
Facebook Twitter WhatsApp LinkedIn

In this tutorial, we will learn everything we need to know about test scenarios
and scenario testing. Before starting with test scenarios and scenario testing,
let’s first understand – what is a scenario?

A scenario is a credible and coherent story about how someone can use an
application.

What is a Test Scenario?
A Test Scenario is a statement describing the functionality of the
application to be tested. It is used for end-to-end testing of a feature
and is generally derived from the use cases.

Test scenarios can serve as the basis for lower-level test case creation. A
single test scenario can cover one or more test cases. Therefore a test
scenario has a one-to-many relationship with the test cases.

As an example, consider a test scenario – “Verify that the user is not able to
login with incorrect credentials”. Now, this test scenario can be further broken
down into multiple test cases like-

1. Checking that a user with the correct username and incorrect
password should not be allowed to log in.

2. Checking that a user with an incorrect username and correct
password should not be allowed to log in.

3. Verifying that users with incorrect usernames and incorrect
passwords should not be allowed to log in.

Obviously, the test cases will have a well-defined format, explained in this
post – Test case template.
Also, check – Difference b/w a test case and test scenario.

What is Scenario Testing?
Scenario testing is a type of testing carried out using scenarios derived from
the use cases. Also, using scenario testing, complex application logic can be
tested using easy-to-evaluate test scenarios.

Advantages of Test Scenarios
• Scenario testing can be carried out relatively faster than testing

using test cases.
• It can ensure good test coverage since the test scenarios are

derived from user stories.
• It saves a lot of time. Hence, these are better with projects having

time constraints.

https://artoftesting.com/test-case-template
https://artoftesting.com/difference-between-test-case-and-test-scenario

Test Scenario Template
A Test Scenario document can have the below fields-

• Module – The module or the component of the application.

• RequirementId – This field is optional and can be linked to
the SRS.

• TestScenarioId – This field is the identifier of the test
scenarios.

• Description – The description field describes the purpose of
the test scenario.

Best Practices for Writing Test Scenarios
• Should be easy to understand.
• Easily executable.
• Should be accurate.
• Traceable or mapped with the requirements.
• Should not have any ambiguity.

Test Scenario Examples
Below is the list of test scenarios that are frequently asked in software testing
interviews. In these test scenario examples, we are covering scenarios related
to UI, functionality, non-functional requirements as well as negative test
scenarios.

Although there can be numerous scenarios for any given application, we
have limited the scenarios to the most basic and generic functionalities.

• Test Scenarios of ATM Machine
• Test Scenarios of Bike
• Test Scenarios of Calculator
• Test Scenarios of Car
• Test Scenarios of Chair
• Test Scenarios of Coffee Vending Machine
• Test Scenarios of DateField
• Test Scenarios of Door
• Test Scenarios of E-commerce Website
• Test Scenarios of Facebook

https://artoftesting.com/software-requirement-specifications-srs
https://artoftesting.com/atm
https://artoftesting.com/bike
https://artoftesting.com/calculator
https://artoftesting.com/car
https://artoftesting.com/chair
https://artoftesting.com/coffee
https://artoftesting.com/datefield
https://artoftesting.com/door
https://artoftesting.com/ecommerce
https://artoftesting.com/facebook

• Test Scenarios of Fan
• Test Scenarios of Flight Reservation System
• Test Scenarios of Gmail
• Test Scenarios of Google Search
• Test Scenarios of Hospital Management System
• Test Scenarios of Keyboard
• Test Scenarios of Kindle
• Test Scenarios of Lift
• Test Scenarios of Login Page
• Test Scenarios of Mobile Phone
• Test Scenarios of Mouse
• Test Scenarios of Microwave Oven
• Test Scenarios of Notepad
• Test Scenarios of Online Examination System
• Test Scenarios of Pen
• Test Scenarios of Pencil
• Test Scenarios of Registration Page
• Test Scenarios of Remote Control
• Test Scenarios of Stapler
• Test Scenarios of Table
• Test Scenarios of Triangle
• Test Scenarios of TV
• Test Scenarios of Wrist Watch
• Test Scenarios of Water Bottle
• Test Scenarios of Whatsapp
• Test Scenarios of White Board
• Test Scenarios of White Board Marker
• Test Scenarios of Youtube

https://artoftesting.com/fan
https://artoftesting.com/flightReservation
https://artoftesting.com/flightreservation
https://artoftesting.com/gmail
https://artoftesting.com/google
https://artoftesting.com/hospitalmanagement
https://artoftesting.com/keyboard
https://artoftesting.com/kindle
https://artoftesting.com/lift
https://artoftesting.com/login
https://artoftesting.com/mobile
https://artoftesting.com/mouse
https://artoftesting.com/oven
https://artoftesting.com/notepad
https://artoftesting.com/onlineexamination
https://artoftesting.com/pen
https://artoftesting.com/pencil
https://artoftesting.com/registration
https://artoftesting.com/remote
https://artoftesting.com/stapler
https://artoftesting.com/table
https://artoftesting.com/triangle
https://artoftesting.com/tv
https://artoftesting.com/watch
https://artoftesting.com/test-cases-water-bottle
https://artoftesting.com/whatsapp
https://artoftesting.com/whiteBoard
https://artoftesting.com/test-cases-white-board-marker
https://artoftesting.com/youtube

What is a Test Case? How to
write test cases?
Facebook Twitter WhatsApp LinkedIn

Software testing of an application includes validating its functional as well
as non-functional requirements. For validating these requirements, software
testers are required to create effective test cases using different white
box and black box test design techniques.

What is a Test Case?
A test case is a set of conditions for evaluating a particular feature of a
software product to determine its compliance with the business
requirements.
A test case has pre-requisites, input values, and expected results in a
documented form that cover the different test scenarios.
Once the test cases are created from the requirements, it is the job of the
testers to execute those test cases. The testers read all the details in the test
case, perform the test steps, and then based on the expected and actual

result, mark the test case as Pass or Fail.

Test Case Attributes
Let’s check the different attributes of a test case that comprise a test case
and make them more reliable, clear, and concise avoiding or reducing any
sort of redundancy.

1. TestCaseId – A unique identifier of the test case.
It is a mandatory field that uniquely identifies a test case e.g.
TC_01.

2. Test Summary – One-liner summary of the test case.
This is an optional field. Normally the test cases either have the
‘Test Summary’ field or the ‘Description’ field.

https://artoftesting.com/non-functional-requirements
https://artoftesting.com/how-to-write-test-cases
https://artoftesting.com/white-box-testing
https://artoftesting.com/white-box-testing
https://artoftesting.com/black-box-testing

3. Description – Detailed description of the test case.
This field defines the purpose of the test case e.g. verify that the
user can login with a valid username and valid password.

4. Prerequisite or pre-condition – A set of prerequisites that
must be followed before executing the test steps.
For example – while testing the functionality of the application
after login, we can have the pre-requisite field as “User should be
logged in to the application”.

5. Test Steps – Detailed steps for performing the test case.
This is the most important field of a test case. The tester should
aim to have clear and unambiguous steps in the test steps field
so that some other person can follow the test steps during test
execution.

6. Test Data – The value of the test data used in the test case.
For example – while testing the login functionality, the test data
field can have the actual value of the username and password to
be used during test execution.

7. Expected result – The expected result in order to pass the
test.
Based on the test steps followed and the test data used, we come
up with the expected result e.g. the user should successfully login
and navigated to home page.

8. Actual result – The actual result after executing the test steps.
This field is filled during test execution only. In this field, we write
the actual result observed during the test case execution.

9. Test Result – Pass/Fail status of the test execution.
Based on the expected result and the actual result, the test case
is marked as passed or Failed.
Apart from Pass/Fail, we can have other values also like-
Deferred, when the test case is marked to be executed later, for

some reason.
Blocked, when the test case execution is blocked due to some
other issue in the application).

10. Automation Status – Identifier of automation – whether the
application is automated or not.
This is an optional field used only when we have automation in
the project.

11. Date – The test execution date.
This field helps in keeping track of the different iteration during
multiple test execution cycles.

12. Executed by – Name of the person executing the test case.
This field helps when there are multiple team members working
on the test execution activity.

For a detailed Test case template in downloadable Xls format, you can also
check our tutorial – Test Case Template (Xls).

Test Case Examples

Login Page Registration Page E-commerce App Google Search

GMail Youtube Facebook ATM Machine

Chair Coffee Machine DateField Door

Calculator Fan Flight Reservation Car

Hospital Management Keyboard Kindle Lift

Mobile Phone Mouse Microwave Oven Notepad

Online Examination Pen Pencil Remote Control

Stapler Table Triangle TV

Wrist Watch Water Bottle Whatsapp White Board

Bike Marker Forgot Password Air Conditioner

https://artoftesting.com/test-case-template
https://artoftesting.com/login
https://artoftesting.com/registration
https://artoftesting.com/ecommerce
https://artoftesting.com/google
https://artoftesting.com/gmail
https://artoftesting.com/youtube
https://artoftesting.com/facebook
https://artoftesting.com/atm
https://artoftesting.com/chair
https://artoftesting.com/coffee
https://artoftesting.com/datefield
https://artoftesting.com/door
https://artoftesting.com/calculator
https://artoftesting.com/fan
https://artoftesting.com/flightreservation
https://artoftesting.com/car
https://artoftesting.com/hospitalmanagement
https://artoftesting.com/keyboard
https://artoftesting.com/kindle
https://artoftesting.com/lift
https://artoftesting.com/mobile
https://artoftesting.com/mouse
https://artoftesting.com/oven
https://artoftesting.com/notepad
https://artoftesting.com/onlineexamination
https://artoftesting.com/pen
https://artoftesting.com/pencil
https://artoftesting.com/remote
https://artoftesting.com/stapler
https://artoftesting.com/table
https://artoftesting.com/triangle
https://artoftesting.com/tv
https://artoftesting.com/watch
https://artoftesting.com/test-cases-water-bottle
https://artoftesting.com/whatsapp
https://artoftesting.com/whiteboard
https://artoftesting.com/bike
https://artoftesting.com/test-cases-white-board-marker
https://artoftesting.com/test-cases-forgot-password
https://artoftesting.com/test-cases-for-ac-remote

Test case vs Test Scenario.
A test case is a set of conditions for evaluating a particular feature of a
software product. Basically test cases help in determining the compliance of
an application with its business requirements.

Whereas, a test scenario is generally a one-line statement describing a
feature of the application to be tested. It is used for end-to-end testing of a
feature. Usually, it is derived from the use cases.

Let’s now see the difference between test case and test scenario.

Test Case vs Test Scenario
Test Case Test Scenario

A test case contains clearly defined test steps for

testing a feature of an application.

A test scenario contains a high level

documentation, describing an end to end

functionality to be tested.

Test cases focus on “what to test” and “how to

test”.
Test scenarios just focus on “what to test”.

These have clearly defined step, pre-requisites,

expected results etc. Hence, there is no ambiguity.

Test scenarios are generally one-liner. Hence,

there is always possibility of ambiguity

during testing.

Test cases can be derived from test scenarios.

They have many to one relationship with the test

scenarios.

These are derived from use cases.

Test cases are efficient in exhaustive testing of

application.

Test scenarios are beneficial in quick testing

of end to end functionality of the application.

More resources are required for documentation

and execution of test cases.

Relatively less time and resources are

required for creating and testing using

scenarios.

https://artoftesting.com/test-case
https://artoftesting.com/test-scenario-examples
https://artoftesting.com/exhaustive-testing
https://artoftesting.com/exhaustive-testing

Well-written test case

To test the application’s functionality, a well-described test case is also essential. How to
describe a test case correctly?

• ID. Each test case should have its unique identifier. If you use a test management
tool in your project (such as Jira, Testlink), the numbers are generated
automatically. If there is no such tool or it is unavailable due to failure, for example,
you can use Excel and number the test cases sequentially, TC01, TC02, and so on.

• Name. The name should be short, without any details: Order form closing (admin
user), for example. The too-long name makes your work unnecessarily difficult. I
remember situations early in my testing career when I wanted to name test cases in
great detail. One of the examples: “Closing the order form by clicking the cross icon
by a user with administrator privileges and redirecting to the main page.” Instead of
making it easier for myself, I was just wasting time because the name was hard to
remember, and it often did not display completely in the test cases list because of
too many characters.

• Objective. The test objective should be more specific than the name. It should be
understood by a person who is not the test case author.

• Preconditions. Also called prerequisites. In other words, conditions must be
met to proceed with a test case. What roles will be assigned to users, what fields
should be completed, what tab should be opened, and similar?

When the Project Manager asks for information regarding the time it takes to complete a
given test case, one must always take into account how long it may take to meet the
prerequisites, such as filling in the fields and creating appropriate objects. Once I focused
too much on steps. There were only a few of them, but I found that it took a long time to
meet the prerequisites. So I gave the time too far from what I actually needed to complete
the given test cases.

• Steps. Steps that should be performed so that the test result can appear in the
application. The steps should be described from the end user’s point of view. The
tester gets into the end user’s role as if they were using the product area.

• Expected result. The result should appear after executing the given step.

• Priority. Defines the test case importance. Allows the Project Manager and
manual tester to assess which cases to execute first when time is short and a change
needs to be delivered quickly.

• Version number. We have consider changes that may be introduced to the
given functionality at some point. Then, test cases need to be updated. We then give
the new version of the test case a higher number than the previous one.

Test case versioning is more and more often available in tools such as the popular Jira,
thanks to which we can at any time review previous versions and recall what changes have
been made.

Sample test case

The test case should be checked by another tester who can point out correct suggestions,
catch typos, and similar.

The test case quality should be at the highest level, especially in the so-called validated
projects. They are additionally checked by a validator – a person responsible for their
degree of accuracy. In such projects, the form of writing test cases is usually imposed by the
validator, and, from my experience, you have to adapt to the form desired in the project.

Test cases coverage

In functional testing, we should include positive as well as negative test cases.
• Positive – show that the given change works as described and intended in the

application.

• Negative – are used to check what happens as a result of undesired functionality
operation, after entering bad data, for example.

Let me describe this with an example.

Types of test cases

Test case vs. test scenario

You may find the terms test case and test scenario alternately used, which may be
confusing. The easiest way to distinguish them is to compare the scale/scope: a test case
covers a part of the application process, while a test scenario usually covers the entire
process, meaning several test cases, both negative and positive.

Differences between test case and test scenario

Black Box Testing
Facebook Twitter WhatsApp LinkedIn

Black box testing is also referred to as specification-based testing. It
involves performing testing based on the specification of the system under
test. Unlike white-box testing, the knowledge of the internal architecture and
the application code is not required in black-box testing.

Black Box Testing Definition
Black box testing is the type of testing in which an application is
tested based on its requirements specifications without the need for
knowledge of its internal architecture.

Features of Black Box Testing
• It tests both functional as well as non-functional requirements of

the application.
• Knowledge/access to the coding/design/internal architecture of

the software is not required.

• Testers can work independently from developers thus ensuring
unbiased and end-user centric testing.

httpv://www.youtube.com/watch?v=Sqkda4c\u002d\u002dEI

How to do black-box testing?
After learning black box testing techniques, let us learn the different steps
involved in a typical black-box test.

• The first step is to check the requirement specifications provided
by the application. The requirements should be provided in a
properly documented SRS file.

• Tester collects the different positive test scenarios and negative
test scenarios to verify if the system under test processes them
correctly. This ensures good test coverage.

• The test cases are executed and the output is validated against
the expected results. This process is to mark the pass or fail of the
test result.

• The failed test cases are sent back to the development team to fix
the bugs.

• After the fix, a retest is conducted to check and ensure all the test
cases run successfully.

Advantages of black-box testing
1. Tests are performed from the user’s point of view. So, there is

higher chance of meeting customer’s expectations.

2. There is unbiased testing as both the tester and the developer
work independently.

3. It is suitable for the testing of very large systems.

4. There is no need for any technical knowledge or language
specification.

https://artoftesting.com/software-requirement-specifications-srs

5. Test cases can be designed as soon as the requirements are
finalized.

Boundary Value Analysis

Facebook Twitter WhatsApp LinkedIn

Software testing or rather exhaustive software testing is a very time and
resource-intensive activity. In order to effectively test any application in the
best possible time and with optimal resources, we use different test design
techniques. One such technique is boundary value analysis.

In this article, we will explore this testing technique along with an example and
also check its advantages and disadvantages.

What is boundary value analysis?
Boundary value analysis is a black-box testing technique. It is closely
associated with equivalence class partitioning. In this technique, we analyze
the behavior of the application with test data residing at the boundary
values of the equivalence classes.

https://artoftesting.com/equivalence-class-partitioning

By using the test data residing at the boundaries, there is a higher chance of
finding errors in the software application.

Boundary Value Analysis Example
Let’s consider the same example we used in the equivalence partitioning
tutorial. An application that accepts a numeric number as input with a value
between 10 to 100.

While testing such application, we will not only test it with values from 10 to 100
but also with other sets of values like – less than 10, greater 10, special
characters, alphanumeric, etc.

For increasing the probability of finding errors instead of picking random
values from those classes, we can pick the values at the boundaries like
below-

Equivalence Classes Test Data using Boundary Value Analysis

Numbers between 10 to100 10, 100

Numbers less than 10 9

Numbers greater than 100 101

Advantages of Boundary Value Analysis
1. It is easier and faster to find defects using this technique. This is

because the density of defects at boundaries is more.

2. Instead of testing will all set of test data, we only pick the one at
the boundaries. So, the overall test execution time reduces.

Disadvantages of boundary value
analysis

1. The success of the testing using this technique depends on the
equivalence classes identified, which further depends on the
expertise of the tester and his knowledge of the application.
Hence, incorrect identification of equivalence classes leads to
incorrect boundary value testing.

2. Applications with open boundaries or applications not having
one-dimensional boundaries are not suitable for this technique.
In those cases, other black-box techniques like “Domain Analysis”
are used.

White Box Testing
Facebook Twitter WhatsApp LinkedIn

Testing is essential to software development to ensure the delivery of high-
quality, error-free software products. Testers employ different software testing
techniques to identify different issues, defects, and errors in software
products. Among all white box testing is one. It is concerned with evaluating a
software’s internal structure and implementation details.

This blog post will discuss the essential aspects of white box testing in
software engineering.

What is White-box testing?
White box testing is a software testing technique that tests a system’s internal
design, source code structure, data structures used, and working details. Its
primary objective is to improve the software’s design, input-output flow,
usability, and security. It is also called transparent testing, structural testing,
and glass box testing.

Implementing this testing technique requires testers to know the system’s
code, architecture, and implementation details. Using this knowledge, they
create test cases and execute them to verify the system’s correctness at the
code level. Hence, it is also known as code-based testing.

Generally, developers perform white box testing. They have complete
knowledge of the software’s source code and internal workings. However, in
some cases, quality assurance (QA) professionals and testers who
understand complex code can also do it.

This testing technique is called ‘White Box’ because developers or testers peek
into a system’s internal workings from its outer shell.

It applies to the first two levels of software testing – unit testing and integration

testing. Unit testing validates each software module independently.
Subsequently, integration testing combines unit-tested modules logically and
tests their interaction or communication.

https://artoftesting.com/unit-testing
https://artoftesting.com/integration-testing
https://artoftesting.com/integration-testing

Features
• Access to the Source Code: White box testing provides

access to the software’s source code. This helps validate
individual functions and modules.

• Code Coverage Analysis: Code coverage is a metric that
determines the amount of code executed during testing. White
box testing analyzes code coverage and uncovers untested
source code areas.

• Detecting Logical Errors: It helps identify logical errors like
infinite loops and incorrect conditional statements.

• Code Optimization: It detects performance issues, areas of
code that need to be improved, and other issues. Developers or
testers work to fix these issues and optimize the source code.

• Security Testing: Developers or testers can access the
software’s source code and know its internal workings. Hence,
they can identify security vulnerabilities.

What To Verify in White Box Testing?
White box testing in software testing evaluates the software’s source code to
verify the following parameters:

• Internal security vulnerabilities.
• Each object, function, and statement of the source code

individually.
• The functionality of conditional loops.
• Broken, incomplete, and poorly structured code paths.
• The input and output flow.

In short, this testing technique validates a software’s working flow. It involves
providing a set of inputs and comparing the expected and actual outputs. If
the actual output does not match the expected one, it results in an error or
bug.

White Box Testing Example
Now, we know that white box testing aims to verify the code structure, such as
loop statements, conditional statements, decision branches, etc. We’ll
understand it with a simple example. Consider the following code:

Test (a, b)

{

 int n;

 if (n % 2 == 0)

 {

 print("Even number")

 }

 else

 {

 print("Odd Number")

 }

}

To validate this code, we have the following two test cases:

• n = 25
• n = 50

For the first test case, n = 25, the ‘if’ condition does not hold true. Hence, the
program flow moves to the ‘else’ block and prints the statement inside it. For
the second test case, n = 50, the ‘if’ condition holds true, and the statement
inside it gets executed.

This way, white box testing has exercised each line of an application’s source
code and uncovered potential code-level errors.

White Box Testing Techniques
The different types of white box testing techniques are as follows:

1. Statement Coverage
This technique requires traversing and testing each statement in the source
code at least once. As a result, the entire source code gets exercised.

The statement coverage determines the percentage of the source code a
specific set of test cases exercises. The formula for statement coverage is:

Statement Coverage = (Number of Statements Executed /
Total Number of Statements) * 100

2. Decision Coverage/Branch Coverage
The best example of a branch (decision point) in programming is the ‘if’
statement. It has two branches – True and False. The branch coverage
technique ensures that each branch in the source is executed at least once.

Branch coverage implies the percentage of branches or decision points
executed during testing.

Branch Coverage = (Number of executed branches / Total
number of branches) * 100%

3. Condition Coverage
Condition testing involves testing the individual conditions for both TRUE and
FALSE outcomes. So, getting 100% condition coverage requires exercising each
condition for both TRUE and FALSE results. For n conditions, we will have 2n test
scripts.

The primary aim of condition coverage is to determine the output of each
condition in the source code. However, it tests only those conditions with
logical operands whose outcome is either true or false.

4. Multiple Condition Testing
It aims to test all the possible combinations of every condition in a branch. Let
us understand this with an example.

Consider the following code:

if (A||B)

 print C

The test cases for the above code will be:

1. A=TRUE, B=TRUE
2. A=TRUE, B=FALSE
3. A=FALSE, B=TRUE

4. A=FALSE, B=FALSE
Our example has 2 conditions – A and B, and 4 test cases. If there were 3
expressions, the number of test cases would be 8.

Hence for 100% coverage, we will have 2n test scripts. This is very exhaustive,
and it is very difficult to achieve 100% coverage.

5. Path Testing
Path testing ensures that all possible paths in the source code are executed
at least once. It involves creating a control flow graph using the source code
or flowchart. Later, it determines the Cyclomatic complexity, which refers to
independent paths. So, testers create minimal test cases for such
independent paths.

Path Coverage = (Number paths exercised / Total Number of
paths in the program) x 100 %

6. Loop Testing
Loops are common programming constructs and are used in most large
programs. Testing loops is essential, as there are high chances of errors
occurring at the start or end of loops. Hence, performing loop testing
uncovers bugs or errors in any specific loop. The primary error encountered in
loops is wrong indexes.

Types of White Box Testing
Here are different types of white box testing:

• Unit Testing: This is the first level of software testing. It tests an
application’s every module, called a unit, individually for its
correctness. It ensures that each component functions as
expected.

• Integration Testing: This comes after integration testing. It
combines unit-tested components logically and validates the
interaction between them. It aims to uncover any errors in the
interaction of components.

• White Box Penetration Testing: Testers have complete
access to an application’s source code and network, IP, and
server data, including passwords and maps. The primary goal of
penetration testing is to uncover areas of the source code with
security vulnerabilities.

• White Box Mutation Testing: As the name suggests,
mutation testing depends on alterations. Testers perform minute
modifications to the source code to check whether the execution
of test cases on it uncovers any bugs. If test cases pass, it
indicates an error in the source code. However, if test cases fail,
the source code is error-free.

Advantages and Disadvantages of White
Box Testing
Let us now shed light on the advantages and disadvantages of white box
testing.

Advantages
• White box testing is comprehensive and detailed as it exercises

every line of the source code.
• It identifies potential hidden errors, defects, and security

vulnerabilities. Fixing them requires removing some lines of
source code, which results in code optimization.

• It ensures that the source code complies with the coding
standards and is performance-optimized.

• Even if the GUI is unavailable, testing starts early in the software

development life cycle (SDLC).
• Test cases are easy to automate.
• The source code transparency helps determine the exact type of

input data required for testing.
• Testers or developers can create test cases that can ensure

maximum test coverage.

https://artoftesting.com/software-development-life-cycle-sdlc
https://artoftesting.com/software-development-life-cycle-sdlc

Disadvantages
• White box testing requires in-depth programming knowledge to

understand and analyze a system’s source code and create test
cases around it.

• It primarily focuses on testing the system’s internal workings and
misses out on external issues.

• Large applications require a lot of time to undergo white box
testing due to their lengthy source codes.

• A small change in the source code requires writing test cases
again.

• There are strong chances of resulting in production errors.

White Box Testing Tools
Here is a list of some commonly used white box testing tools:

1. Veracode: It provides a suite of tools that help identify and fix
flaws in applications developed using different programming
languages, such as .NET, C++, Java, etc. You can also test desktop
and mobile applications for security.

2. EclEmma: It is a free code coverage tool for Java applications.
It was designed to run tests and analyze results within the Eclipse
workbench.

3. JSUnit.net: JSUnit is a component of JUnit, a unit testing
framework for Java applications. JSUnit is an open-source unit
testing tool for JavaScript testing. It is available under GNU
General License 2.0.

4. NUnit: It is a testing framework developed in C# to perform
data-driven testing on .NET applications. It supports the parallel
execution of tests without any manual intervention.

5. CppUnit: It is also the component of JUnit as JSUnit. It is
available for unit testing C++ applications.

Black box vs White box testing
The difference between black-box testing and white-box testing is one of the
most common testing interview questions. Both are equally important and
performed according to the situation. Here are a few differences to bring
clarity to both techniques.

Black box testing White-box testing

Any knowledge of implementation is also not

required.

The whole internal working of the SUT is

verified by a tester that has complete

knowledge of it.

Aims at validating the functional requirements

of the software.
Aims at code optimization.

This testing is usually done by the software

testers.

This testing is usually done by software

developers as they have knowledge of

internal architecture and implementation of

the application.

It is less time-consuming. It is comparatively more time-consuming.

Types – Functional Testing, Non-functional

testing, Regression Testing, etc.

Types of white box testing – path testing,

loop testing, condition testing, etc.

https://artoftesting.com/difference-between-white-box-and-black-box-testing
https://artoftesting.com/manual-testing-interview-questions

What is Automation Testing?
Facebook Twitter WhatsApp LinkedIn

What is Automation Testing?
Automation testing is a type of software testing that involves
automated test case execution using an automation tool.
So, basically, it automates the manual testing process. The tester writes test
scripts and then runs the test scripts either on-demand or schedule them for
periodic executions. This reduces the overall testing time, thus helping in
faster product releases.

What to Automate?
Now that we know what exactly is Automation testing, let’s check which
test cases to automate. Or, what all test cases are ideal candidates for
automation.

1. Test cases that test critical functionality of the application
For example for an e-commerce application, the critical functionality would
be the product discovery via search and category pages, add to cart and
then buy functionality. So, these test cases should be first chosen. Test cases
for add to wishlist and notify me etc should be of lower priority. Hence should
be picked accordingly for automation.

2. Test cases that require repeated test execution with a
large dataset
There are many test cases or application flow that require performing an
action again and again. Such test cases are also ideal candidates for
automation as automation reduces a considerable amount of testing effort.

Take an example of a search feature of an application. If we can automate
the flow to search with a search term and then verify that search results. Then

we can run the same script again and again with different types of search
terms like – single word, multi-word, alphanumeric, with special characters,
with foreign language characters, etc.

3. Tests that are time-consuming
Workflows that require a considerable amount of time to execute and set up
are also ideal candidates for automation.

Let’s take the example of e-commerce application forward. If some test cases
require the set up of multiple products and then performing some operation
on those products. Such test cases when automated not only reduce the test
execution time but also, free the manual testers of the redundant task. In
addition. helping them focus on other exploratory testing activities.

4. Test cases that require parallel execution
There are scenarios that require checking the concurrent access to the
application e.g. in the case of performance testing with multiple users. In such
cases, either manual testing is not feasible or it would require a lot more
resources to test the particular scenarios. In those cases, automated scripts
help by creating concurrent requests and collating results in one place.

What not to Automate?
It is also important to understand, what sort of test cases cannot or rather
should not be automated.

1. UI test cases
GUI or the Graphical User Interface test cases should best be left for manual
testing or human validation. This is because even with the slightest change in
the UI, the test cases would fail. Moreover, it is also very difficult to create
reliable UI test cases across multiple devices and screen resolutions.

2. Usability test cases
Rather than ‘should not’ it is the case of ‘cannot’ automate. Usability test
cases, test application’s ease of use by different sets of users which, with the
current technology is not possible to automate.

https://artoftesting.com/exploratory-testing

3. Functionalities that are rarely used and take time for
scripting
It is good to automate complex scenarios but investing your effort in
scenarios that would rarely be used doesn’t provide a good Return on
Investment.

4. Exploratory testing
Exploratory testing requires learning about the application on the fly and
simultaneous testing. Hence, it is not possible to automate exploratory testing
scenarios.

When should we Automate?
After defining, all the capabilities of the automation suite during Test

Planning, we can begin the automation framework creation activity in
parallel with the development team. But the scripting of the test cases should
be done at the right time.

For better automation ROI and to avoid any rework – scripting of test
cases should start when the application is stable and
frequent changes in the application are not anticipated.

Why Automated Testing?
Following are some of the advantages or benefits of automation testing-

• Automation testing reduces the overall test execution
time. Since automated test execution is faster than manual test
execution.

• It reduces the cost and resource requirements of the
project. This is because the script created once can be made to

run any number of times as long as there is no change in the
application.

• Helps in working with a large set of input which isn’t be
feasible with manual testing.

• Helps in creating a Continuous Integration environment
wherein, after each code push, automatic test suite execution
takes place with the new build. Using CICD tools like Jenkins, we
can create Jobs that execute the test cases after the deployment
of a build and mails the test results to the stakeholders.

When not to Automate?
Let’s see some scenarios, where it is not advisable to do automated testing
along with some disadvantages of automation.

• Lack of expertise of the automation tool – Lacking
expertise in the automation tool and\or programming language
to create robust scripts is one of the primary reason which can
lead to not using the tool to its full potential. Factors like these
lead to the failure of automation testing.

• Incorrectly chosen test cases – The success of
automation testing heavily depends on the test cases chosen for
automation. Incorrectly chosen tests lead to wastage of
resources and time invested in automation.

• Applications with frequent changes – Choosing test
automation for an application with frequent changes requires
constant maintenance of the test scripts, which at times might
not give the desired ROI.

• Inefficiently written test scripts – Test scripts with limited
or inadequate validations can lead to false-positive test results.
These false-positive results conceal the underlying defects which

could have been easily captured if validated manually or scripted
in a better way.

Popular Test Automation Testing Tools
The software market is full of paid and free test automation tools. Based on
the various factors like – project requirement, budget, the expertise of the
resources, etc, we should choose the right tool, suited for our needs. The
following are some of the most popular test automation tools in the market.

Selenium
Selenium is an open-source test automation tool. It has a very large and
active community. It has the maximum market share among all the popular
tools and supports scripting in multiple languages – Java, Python, Ruby,
Javascript, C#, etc. Download link – Selenium Download

Katalon Studio
A fairly new tool but rapidly getting popular due to record and playback
features along with scripting for more technical users. It is free but not open
source.

UFT One
A paid tool by Microfocus that can be used for automation of both Web and
Windows applications. It supports scripting in VBScript only.

TestComplete
A paid tool provided by Smartbear can be used for automation of Web,
Mobile as well as Desktop applications.

Tosca
It is a paid tool by Tricentis that provides record and playback features for
automating web applications, APIs, and windows applications. It is considered
one of the most popular codeless automation tools that can completely
eliminate the need for scripting.

https://www.seleniumhq.org/download/

Watir
Watir (Web Application Testing In Ruby) is an open-source automation tool
that can automate web applications in Ruby. It has a watir-webdriver
component that is based on Selenium.

Appium
It can be considered as Selenium for mobile applications. Just like Selenium, it
is open-source and has a large user base.

TestProject
TestProject is a free and community-powered automation testing tool by
Tricentis. It can be used for the automation of both web and mobile
applications.

Ranorex
A paid tool with record and playback features. Using this we can automate
android, ios and Windows applications. Along with record and playback, it
also supports scripting in using C# and VB scripts.

For more details, you can check our post – Top Test Automation
Tools containing in-depth review, tool’s features, download link, and our
recommendations of the different tools.

Tutorials on Automation Testing Tools

Selenium Katalon Cucumber TestNG

https://artoftesting.com/automation-testing-tools
https://artoftesting.com/automation-testing-tools
https://artoftesting.com/selenium-tutorial
https://artoftesting.com/katalon-studio-tutorial
https://artoftesting.com/cucumber-tutorial
https://artoftesting.com/testng-tutorial

What is Regression Testing? Test Cases

(Example)
ByThomas HamiltonUpdatedMay 13, 2023

What is Regression Testing?

Regression Testing is defined as a type of software testing to confirm that
a recent program or code change has not adversely affected existing
features. Regression Testing is nothing but a full or partial selection of

already executed test cases that are re-executed to ensure existing
functionalities work fine.

This testing is done to ensure that new code changes do not have side
effects on the existing functionalities. It ensures that the old code still

works once the latest code changes are done.

Why Regression Testing?

There is a need for regression testing whenever the code is changed, and

you need to determine whether the modified code will affect other parts of

the software application. Moreover, regression testing is needed when a
new feature is added to the software application. Regression tests may

also be performed when a functional or performance defect/issue is fixed.

https://www.guru99.com/author/thomas

When can we perform Regression Testing?

Here are the scenarios when you can perform regression testing.

New functionality is added to the application: This happens when new

features or modules are created in an app or a website. The regression is
performed to see if the feature is working properly.

In case of change requirement: When any significant change occurs in
the system, regression testing is used. This test is done to check if these

shifts have affected other features.

After a defect is fixed: The developers perform regression after fixing a
bug issue in any functionality. This is done to determine if the changes

made while fixing the issue have affected other related features.

Once the performance issue is fixed: After fixing any performance issues,

regression testing is done to see if it has affected other functionalities.

While integrating with a new external system: Regression testing is

required whenever the product integrates with a new external system.

How to do Regression Testing in Software Testing

In order to do Regression Testing process, we need to first debug the

code to identify the bugs. Once the bugs are identified, required changes

are made to fix it, then the regression testing is done by selecting relevant
test cases from the test suite that covers both modified and affected parts

of the code.

Software maintenance is an activity which includes enhancements, error
corrections, optimization and deletion of existing features. These

modifications may cause the system to work incorrectly. Therefore,
Regression Testing becomes necessary. Regression testing, and

specifically various regression testing techniques, can be carried out for

effective software quality assurance:

Retest All

This is one of the methods for Regression Testing, specifically employing a
regression testing suite, in which all the tests in the existing test bucket or
suite should be re-executed. This is very expensive as it requires huge time

and resources.

Regression Test Selection

Regression Test Selection is a technique in which some selected test cases

from test suite are executed to test whether the modified code affects the
software application or not. Test cases are categorized into two parts,
reusable test cases which can be used in further regression cycles and

obsolete test cases which can not be used in succeeding cycles.

Prioritization of Test Cases
Prioritize the test cases depending on business impact, critical &

frequently used functionalities. Selection of test cases based on priority
will greatly reduce the regression test suite.

Regression Testing Tools

If your software undergoes frequent changes, regression testing costs will
escalate. In such cases, Manual execution of test cases increases test

execution time as well as costs. Automation of regression test cases is the
smart choice in such cases. The extent of automation depends on the

number of test cases that remain re-usable for successive regression
cycles.

Following are the most important tools used for both functional and
regression testing in software engineering:

1) testRigor

2) Avo Assure

3) Avo Assure

4) Selenium
5) Quick Test Professional (QTP)

https://bit.ly/32ye79O
https://guru99.link/recommends-avoautomation-regression-testing
https://guru99.link/recommends-avoautomation-regression-testing
https://www.guru99.com/selenium-tutorial.html
https://www.guru99.com/quick-test-professional-qtp-tutorial.html

	What is Software Testing?
	What is Software Testing?
	Why is Software Testing Important?
	Who Conducts Software Testing?
	How is Software Testing done?
	When do we start Software Testing?

	V Model
	What is V Model?
	Advantages of V Model
	Disadvantages of V Model

	Test Strategy Document
	What is test strategy?
	Test strategy approaches
	What is a test strategy document?

	Test Plan
	What is a Test Plan?
	Features of a Test Plan

	Difference Between Test Plan and Test Strategy
	Test Plan vs Test Strategy

	Levels of Testing
	Unit Testing
	Integration Testing
	System Testing
	Acceptance Testing

	Test Scenario – Definition, Template and Examples
	What is a Test Scenario?
	What is Scenario Testing?
	Advantages of Test Scenarios
	Test Scenario Template
	Best Practices for Writing Test Scenarios
	Test Scenario Examples

	What is a Test Case? How to write test cases?
	What is a Test Case?
	Test Case Attributes
	Test Case Examples
	Test Case vs Test Scenario
	Well-written test case
	Test cases coverage
	Test case vs. test scenario

	Black Box Testing
	Black Box Testing Definition
	Features of Black Box Testing
	How to do black-box testing?
	Advantages of black-box testing

	Boundary Value Analysis
	What is boundary value analysis?
	Boundary Value Analysis Example
	Advantages of Boundary Value Analysis
	Disadvantages of boundary value analysis

	White Box Testing
	What is White-box testing?
	Features
	What To Verify in White Box Testing?

	White Box Testing Example
	White Box Testing Techniques
	1. Statement Coverage
	2. Decision Coverage/Branch Coverage
	3. Condition Coverage
	4. Multiple Condition Testing
	5. Path Testing
	6. Loop Testing

	Types of White Box Testing
	Advantages and Disadvantages of White Box Testing
	Advantages
	Disadvantages

	White Box Testing Tools
	Black box vs White box testing

	What is Automation Testing?
	What is Automation Testing?
	What to Automate?
	What not to Automate?
	When should we Automate?
	Why Automated Testing?
	When not to Automate?
	Popular Test Automation Testing Tools
	Selenium
	Katalon Studio
	UFT One
	TestComplete
	Tosca
	Watir
	Appium
	TestProject
	Ranorex

	Tutorials on Automation Testing Tools

	What is Regression Testing? Test Cases (Example)
	What is Regression Testing?
	Why Regression Testing?
	When can we perform Regression Testing?
	How to do Regression Testing in Software Testing
	Retest All
	Regression Test Selection
	Prioritization of Test Cases

	Regression Testing Tools
	1) testRigor
	2) Avo Assure
	3) Avo Assure

