
Simple Object Access Protocol

 i

Simple Object Access Protocol

 i

About the Tutorial

SOAP is an open-standard, XML-based messaging protocol for exchanging information

among computers. This is a brief tutorial that introduces the readers to the

fundamentals of SOAP before moving on to explain its various elements, encoding,

and how SOAP is transported.

Audience

This tutorial has been prepared for beginners to help them understand the basics of

SOAP and how to implement it in practice.

Prerequisites

As a reader of this tutorial, you should have a basic understanding of client/server

environment, and knowledge of XML and XML namespace.

Copyright & Disclaimer

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials

Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute

or republish any contents or a part of contents of this e-book in any manner without

written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point

(I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness

of our website or its contents including this tutorial. If you discover any errors on our

website or in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Simple Object Access Protocol

 ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. WHAT IS SOAP? .. 1

Points to Note ... 1

2. SOAP MESSAGES .. 2

SOAP Message Structure ... 2

3. SOAP ENVELOPE ... 4

Points to Note ... 4

v1.2-Compliant SOAP Message ... 4

SOAP with HTTP POST ... 5

4. SOAP HEADER ... 6

Points to Note ... 6

SOAP Header Attributes .. 6

5. SOAP BODY ... 8

6. SOAP FAULT.. 10

Points to Note ... 10

Sub-elements of Fault ... 10

SOAP Fault Codes .. 11

SOAP Fault Example .. 11

7. SOAP ENCODING .. 13

Scalar Types .. 13

Simple Object Access Protocol

 iii

Compound Types .. 15

8. SOAP TRANSPORT... 18

SOAP via HTTP ... 18

9. SOAP EXAMPLE ... 21

10. SOAP STANDARDS .. 23

Simple Object Access Protocol

 1

SOAP is an acronym for Simple Object Access Protocol. It is an XML-based messaging

protocol for exchanging information among computers. SOAP is an application of the

XML specification.

Points to Note

 SOAP is a communication protocol designed to communicate via Internet.

 SOAP can extend HTTP for XML messaging.

 SOAP provides data transport for Web services.

 SOAP can exchange complete documents or call a remote procedure.

 SOAP can be used for broadcasting a message.

 SOAP is platform- and language-independent.

 SOAP is the XML way of defining what information is sent and how.

 SOAP enables client applications to easily connect to remote services and invoke
remote methods.

Although SOAP can be used in a variety of messaging systems and can be delivered

via a variety of transport protocols, the initial focus of SOAP is remote procedure calls

transported via HTTP.

Other frameworks including CORBA, DCOM, and Java RMI provide similar functionality

to SOAP, but SOAP messages are written entirely in XML and are therefore uniquely

platform- and language-independent.

1. WHAT IS SOAP?

Simple Object Access Protocol

 2

A SOAP message is an ordinary XML document containing the following elements:

 Envelope : Defines the start and the end of the message. It is a mandatory
element.

 Header: Contains any optional attributes of the message used in processing

the message, either at an intermediary point or at the ultimate end-point. It is
an optional element.

 Body: Contains the XML data comprising the message being sent. It is a
mandatory element.

 Fault: An optional Fault element that provides information about errors that

occur while processing the message.

All these elements are declared in the default namespace for the SOAP envelope:

http://www.w3.org/2001/12/soap-envelope

and the default namespace for SOAP encoding and data types is:

http://www.w3.org/2001/12/soap-encoding

NOTE: All these specifications are subject to change. So keep updating yourself with

the latest specifications available on the W3 website.

SOAP Message Structure

The following block depicts the general structure of a SOAP message:

<?xml version="1.0"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"

SOAP-ENV:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<SOAP-ENV:Header>

 ...

 ...

</SOAP-ENV:Header>

<SOAP-ENV:Body>

2. SOAP MESSAGES

http://www.w3.org/2001/12/soap-envelope
http://www.w3.org/2001/12/soap-encoding

Simple Object Access Protocol

 3

 ...

 ...

 <SOAP-ENV:Fault>

 ...

 ...

 </SOAP-ENV:Fault>

</SOAP-ENV:Body>

</SOAP_ENV:Envelope>

Simple Object Access Protocol

 4

The SOAP envelope indicates the start and the end of the message so that the receiver

knows when an entire message has been received. The SOAP envelope solves the

problem of knowing when you are done receiving a message and are ready to process

it. The SOAP envelope is therefore basically a packaging mechanism.

Points to Note

 Every SOAP message has a root Envelope element.

 Envelope is a mandatory part of SOAP message.

 Every Envelope element must contain exactly one Body element.

 If an Envelope contains a Header element, it must contain no more than one,

and it must appear as the first child of the Envelope, before the Body.

 The envelope changes when SOAP versions change.

 The SOAP envelope is specified using the ENV namespace prefix and

the Envelope element.

 The optional SOAP encoding is also specified using a namespace name and the
optional encodingStyle element, which could also point to an encoding style

other than the SOAP one.

 A v1.1-compliant SOAP processor generates a fault upon receiving a message

containing the v1.2 envelope namespace.

 A v1.2-compliant SOAP processor generates a VersionMismatch fault if it
receives a message that does not include the v1.2 envelope namespace.

v1.2-Compliant SOAP Message

Given below is an example of v1.2-compliant SOAP message.

<?xml version="1.0"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"

SOAP-ENV:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 ...

 Message information goes here

 ...

3. SOAP ENVELOPE

Simple Object Access Protocol

 5

</SOAP-ENV:Envelope>

SOAP with HTTP POST

The following example illustrates the use of a SOAP message within an HTTP POST

operation, which sends the message to the server. It shows the namespaces for the

envelope schema definition and for the schema definition of the encoding rules.

The OrderEntry reference in the HTTP header is the name of the program to be

invoked at the tutorialspoint.com website.

POST /OrderEntry HTTP/1.1

Host: www.tutorialspoint.com

Content-Type: application/soap; charset="utf-8"

Content-Length: nnnn

<?xml version="1.0"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"

SOAP-ENV:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 ...

 Message information goes here

 ...

</SOAP-ENV:Envelope>

NOTE: The HTTP binding specifies the location of the service.

Simple Object Access Protocol

 6

The optional Header element offers a flexible framework for specifying additional

application-level requirements. For example, the Header element can be used to

specify a digital signature for password-protected services. Likewise, it can be used to

specify an account number for pay-per-use SOAP services.

Points to Note

 It is an optional part of a SOAP message.

 Header elements can occur multiple times.

 Headers are intended to add new features and functionality.

 The SOAP header contains header entries defined in a namespace.

 The header is encoded as the first immediate child element of the SOAP

envelope.

 When multiple headers are defined, all immediate child elements of the SOAP
header are interpreted as SOAP header blocks.

SOAP Header Attributes

A SOAP Header can have the following two attributes:

Actor attribute

The SOAP protocol defines a message path as a list of SOAP service nodes. Each of
these intermediate nodes can perform some processing and then forward the message

to the next node in the chain. By setting the Actor attribute, the client can specify the
recipient of the SOAP header.

MustUnderstand attribute

It indicates whether a Header element is optional or mandatory. If set to true, the
recipient must understand and process the Header attribute according to its defined
semantics, or return a fault.

The following example shows how to use a Header in a SOAP message.

<?xml version="1.0"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"

SOAP-ENV:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<SOAP-ENV:Header>

4. SOAP HEADER

Simple Object Access Protocol

 7

<t:Transaction

xmlns:t="http://www.tutorialspoint.com/transaction/"

SOAP-ENV:mustUnderstand="true">5</t:Transaction>

</SOAP-ENV:Header>

...

...

</SOAP-ENV:Envelope>

Simple Object Access Protocol

 8

The SOAP body is a mandatory element that contains the application-defined XML data

being exchanged in the SOAP message. The body must be contained within the

envelope and must follow any headers that might be defined for the message.

The body is defined as a child element of the envelope, and the semantics for the body

are defined in the associated SOAP schema.

The body contains mandatory information intended for the ultimate receiver of the

message. For example:

<?xml version="1.0"?>

<SOAP-ENV:Envelope>

........

<SOAP-ENV:Body>

 <m:GetQuotation xmlns:m="http://www.tp.com/Quotation">

 <m:Item>Computers</m:Item>

 </m:GetQuotation>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The example above requests a quotation of computer sets. Note that the

m:GetQuotation and the Item elements above are application-specific elements. They

are not a part of the SOAP standard.

Here is the response to the above query:

<?xml version="1.0"?>

<SOAP-ENV:Envelope>

........

5. SOAP BODY

Simple Object Access Protocol

 9

<SOAP-ENV:Body>

 <m:GetQuotationResponse xmlns:m="http://www.tp.com/Quotation">

 <m:Quotation>This is Qutation</m:Quotation>

 </m:GetQuotationResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Normally, the application also defines a schema to contain semantics associated with

the request and response elements.

The Quotation service might be implemented using an EJB running in an application

server; if so, the SOAP processor would be responsible for mapping the body

information as parameters into and out of the EJB implementation of the

GetQuotationResponse service. The SOAP processor could also be mapping the body

information to a .NET object, a CORBA object, a COBOL program, and so on.

Simple Object Access Protocol

 10

If an error occurs during processing, the response to a SOAP message is a SOAP fault

element in the body of the message, and the fault is returned to the sender of the

SOAP message.

The SOAP fault mechanism returns specific information about the error, including a

predefined code, a description, and the address of the SOAP processor that generated

the fault.

Points to Note

 A SOAP message can carry only one fault block.

 Fault is an optional part of a SOAP message.

 For HTTP binding, a successful response is linked to the 200 to 299 range of

status codes.

 SOAP Fault is linked to the 500 to 599 range of status codes.

Sub-elements of Fault

The SOAP Fault has the following sub-elements:

Sub-element Description

<faultCode> It is a text code used to indicate a class of errors. See the next

Table for a listing of predefined fault codes.

<faultString> It is a text message explaining the error.

<faultActor> It is a text string indicating who caused the fault. It is useful if the

SOAP message travels through several nodes in the SOAP message

path, and the client needs to know which node caused the error. A

node that does not act as the ultimate destination must include a

faultActor element.

<detail> It is an element used to carry application-specific error messages.

The detail element can contain child elements called detail entries.

6. SOAP FAULT

Simple Object Access Protocol

 11

SOAP Fault Codes

The faultCode values defined below must be used in the faultcode element while

describing faults.

Error Description

SOAP-

ENV:VersionMismatch

Found an invalid namespace for the SOAP Envelope

element.

SOAP-

ENV:MustUnderstand

An immediate child element of the Header element, with

the mustUnderstand attribute set to "1", was not

understood.

SOAP-ENV:Client The message was incorrectly formed or contained

incorrect information.

SOAP-ENV:Server There was a problem with the server, so the message

could not proceed.

SOAP Fault Example

The following code is a sample Fault. The client has requested a method named

ValidateCreditCard, but the service does not support such a method. This represents

a client request error, and the server returns the following SOAP response:

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/1999/XMLSchema">

 <SOAP-ENV:Body>

 <SOAP-ENV:Fault>

 <faultcode xsi:type="xsd:string">SOAP-ENV:Client</faultcode>

 <faultstring xsi:type="xsd:string">

 Failed to locate method (ValidateCreditCard) in class

 (examplesCreditCard) at /usr/local/ActivePerl-5.6/lib/

 site_perl/5.6.0/SOAP/Lite.pm line 1555.

Simple Object Access Protocol

 12

 </faultstring>

 </SOAP-ENV:Fault>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Simple Object Access Protocol

 13

SOAP includes a built-in set of rules for encoding data types. It enables the SOAP

message to indicate specific data types, such as integers, floats, doubles, or arrays.

 SOAP data types are divided into two broad categories: scalar types and

compound types.

 Scalar types contain exactly one value such as a last name, price, or product

description.

 Compound types contain multiple values such as a purchase order or a list of
stock quotes.

 Compound types are further subdivided into arrays and structs.

 The encoding style for a SOAP message is set via the SOAP-ENV:encodingStyle
attribute.

 To use SOAP 1.1 encoding, use the value

http://schemas.xmlsoap.org/soap/encoding/.

 To use SOAP 1.2 encoding, use the value

http://www.w3.org/2001/12/soap-encoding.

 Latest SOAP specification adopts all the built-in types defined by XML Schema.
Still, SOAP maintains its own convention for defining constructs not
standardized by XML Schema, such as arrays and references.

Scalar Types

For scalar types, SOAP adopts all the built-in simple types specified by the XML

Schema specification. This includes strings, floats, doubles, and integers.

The following table lists the main simple types, excerpted from the XML Schema Part

0: Primer
http://www.w3.org/TR/2000/WD-xmlschema-0-20000407/

Simple Types Built-In to XML Schema

Simple Type Example(s)

string Confirm this is electric.

boolean true, false, 1, 0.

7. SOAP ENCODING

http://schemas.xmlsoap.org/soap/encoding/
http://www.w3.org/2001/12/soap-encoding
http://www.w3.org/TR/2000/WD-xmlschema-0-20000407/

Simple Object Access Protocol

 14

float -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN.

double -INF, -1E4, -0, 0, 12.78E-2, 12, INF, NaN.

decimal -1.23, 0, 123.4, 1000.00.

binary 100010

integer -126789, -1, 0, 1, 126789.

nonPositiveInteger -126789, -1, 0.

negativeInteger -126789, -1.

long -1, 12678967543233

int -1, 126789675

short -1, 12678

byte -1, 126

nonNegativeInteger 0, 1, 126789

unsignedLong 0, 12678967543233

unsignedInt 0, 1267896754

unsignedShort 0, 12678

unsignedByte 0, 126

positiveInteger 1, 126789.

date 1999-05-31, ---05.

time 13:20:00.000, 13:20:00.000-05:00.

Simple Object Access Protocol

 15

For example, here is a SOAP response with a double data type:

<?xml version='1.0' encoding='UTF-8'?*gt;

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

 <ns1:getPriceResponse

 xmlns:ns1="urn:examples:priceservice"

 SOAP-ENV:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <return xsi:type="xsd:double">54.99</return>

 </ns1:getPriceResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Compound Types

SOAP arrays have a very specific set of rules, which require that you specify both the

element type and array size. SOAP also supports multidimensional arrays, but not all

SOAP implementations support multidimensional functionality.

To create an array, you must specify it as an xsi:type of array. The array must also

include an arrayType attribute. This attribute is required to specify the data type for

the contained elements and the dimension(s) of the array.

For example, the following attribute specifies an array of 10 double values:

arrayType="xsd:double[10]"

In contrast, the following attribute specifies a two-dimensional array of strings:

arrayType="xsd:string[5,5]"

Here is a sample SOAP response with an array of double values:

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

Simple Object Access Protocol

 16

<SOAP-ENV:Body>

 <ns1:getPriceListResponse

 xmlns:ns1="urn:examples:pricelistservice"

 SOAP-ENV:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <return

 xmlns:ns2="http://www.w3.org/2001/09/soap-encoding"

 xsi:type="ns2:Array" ns2:arrayType="xsd:double[2]">

 <item xsi:type="xsd:double">54.99</item>

 <item xsi:type="xsd:double">19.99</item>

 </return>

 </ns1:getPriceListResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Structs contain multiple values, but each element is specified with a unique accessor

element. For example, consider an item within a product catalog. In this case, the

struct might contain a product SKU, product name, description, and price. Here is how

such a struct would be represented in a SOAP message:

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<SOAP-ENV:Body>

 <ns1:getProductResponse

 xmlns:ns1="urn:examples:productservice"

 SOAP-ENV:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <return xmlns:ns2="urn:examples" xsi:type="ns2:product">

 <name xsi:type="xsd:string">Red Hat Linux</name>

 <price xsi:type="xsd:double">54.99</price>

 <description xsi:type="xsd:string">

 Red Hat Linux Operating System

 </description>

 <SKU xsi:type="xsd:string">A358185</SKU>

 </return>

Simple Object Access Protocol

 17

 </ns1:getProductResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

NOTE: Please take care of proper indentation while you write your SOAP code. Each

element in a struct is specified with a unique accessor name. For example, the

message above includes four accessor elements: name, price, description, and SKU.

Each element can have its own data type. For example, name is specified as a string,

whereas price is specified as double.

Simple Object Access Protocol

 18

SOAP is not tied to any transport protocol. SOAP can be transported via SMTP, FTP,
IBM's MQSeries, or Microsoft Message Queuing (MSMQ).

SOAP specification includes details on HTTP only. HTTP remains the most popular

SOAP transport protocol.

SOAP via HTTP

Quite logically, SOAP requests are sent via an HTTP request and SOAP responses are

returned within the content of the HTTP response. While SOAP requests can be sent

via an HTTP GET, the specification includes details on HTTP POST only.

Additionally, both HTTP requests and responses are required to set their content type

to text/xml.

The SOAP specification mandates that the client must provide a SOAPAction header,

but the actual value of the SOAPAction header is dependent on the SOAP server

implementation.

For example, to access the AltaVista BabelFish Translation service, hosted by

XMethods, you must specify the following as a SOAPAction header.

urn:xmethodsBabelFish#BabelFish

Even if the server does not require a full SOAPAction header, the client must specify

an empty string ("") or a null value. For example:

SOAPAction: ""

SOAPAction:

Here is a sample request sent via HTTP to the XMethods Babelfish Translation service:

POST /perl/soaplite.cgi HTTP/1.0

Host: services.xmethods.com

Content-Type: text/xml; charset=utf-8

Content-Length: 538

SOAPAction: "urn:xmethodsBabelFish#BabelFish"

<?xml version='1.0' encoding='UTF-8'?>

<SOAP-ENV:Envelope

8. SOAP TRANSPORT

Simple Object Access Protocol

 19

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<ns1:BabelFish

xmlns:ns1="urn:xmethodsBabelFish"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<translationmode xsi:type="xsd:string">en_fr</translationmode>

<sourcedata xsi:type="xsd:string">Hello, world!</sourcedata>

</ns1:BabelFish>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Note the content type and the SOAPAction header. Also note that the BabelFish

method requires two String parameters. The translation mode en_fr translates from

English to French.

Here is the response from XMethods:

HTTP/1.1 200 OK

Date: Sat, 09 Jun 2001 15:01:55 GMT

Server: Apache/1.3.14 (Unix) tomcat/1.0 PHP/4.0.1pl2

SOAPServer: SOAP::Lite/Perl/0.50

Cache-Control: s-maxage=60, proxy-revalidate

Content-Length: 539

Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>

<namesp1:BabelFishResponse xmlns:namesp1="urn:xmethodsBabelFish">

Simple Object Access Protocol

 20

<return xsi:type="xsd:string">Bonjour, monde!</return>

</namesp1:BabelFishResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

SOAP responses delivered via HTTP are required to follow the same HTTP status codes.

For example, a status code of 200 OK indicates a successful response. A status code

of 500 Internal Server Error indicates that there is a server error and that the SOAP

response includes a Fault element.

Simple Object Access Protocol

 21

In the example below, a GetQuotation request is sent to a SOAP Server over HTTP.

The request has a QuotationName parameter, and a Quotation will be returned in the

response.

The namespace for the function is defined in "http://www.xyz.org/quotation" address.

Here is the SOAP request:

POST /Quotation HTTP/1.0

Host: www.xyz.org

Content-Type: text/xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"

SOAP-ENV:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <SOAP-ENV:Body xmlns:m="http://www.xyz.org/quotations">

 <m:GetQuotation>

 <m:QuotationsName>MiscroSoft</m:QuotationsName>

 </m:GetQuotation>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

A corresponding SOAP response looks like:

HTTP/1.0 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<SOAP-ENV:Envelope

9. SOAP EXAMPLE

Simple Object Access Protocol

 22

xmlns:SOAP-ENV="http://www.w3.org/2001/12/soap-envelope"

SOAP-ENV:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <SOAP-ENV:Body xmlns:m="http://www.xyz.org/quotation">

 <m:GetQuotationResponse>

 <m:Quotation>Here is the quotation</m:Quotation>

 </m:GetQuotationResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Simple Object Access Protocol

 23

SOAP 1.1 was originally submitted to the W3C in May 2000. Official submitters

included large companies such as Microsoft, IBM, and Ariba, and smaller companies

such as UserLand Software and DevelopMentor.

In July 2001, the XML Protocol Working Group released a "working draft" of SOAP 1.2.

Within the W3C, this document is officially a work in progress, meaning that the

document is likely to be updated many times before it is finalized.

SOAP Version 1.1 is available online at http://www.w3.org/TR/SOAP/

The working draft of SOAP Version 1.2 is available at http://www.w3.org/TR/soap12/

Note that the W3C also hosts a submission for "SOAP Messages with Attachments",

which separates from the core SOAP specification. This specification enables SOAP

messages to include binary attachments such as images and sound files. For full

details, see the W3C Note at http://www.w3.org/TR/SOAP-attachments.

10. SOAP STANDARDS

http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/soap12/
http://www.w3.org/TR/SOAP-attachments

