
 Data structure ITGS220

 + + Sheet 3

1

TWO-DIMENSIONAL ARRAYS

Till now, we have only discussed one-dimensional arrays. One-dimensional arrays are organized linearly

in only one direction. But at times, we need to store data in the form of grids or tables. Here, the

concept of single-dimension arrays is extended to incorporate two-dimensional data structures.

A two-dimensional array is specified using two subscripts where the first subscript denotes the row and

the second denotes the column. The C compiler treats a two-dimensional array as an array of one-

dimensional arrays.

Figure 3.1 shows a two-dimensional array which can be viewed as an array of arrays.

3.1 Declaring Two-dimensional Arrays

Any array must be declared before being used. The declaration statement tells the compiler the name of

the array, the data type of each element in the array, and the size of each dimension. A two-

dimensional array is declared as:

data_type array_name[row_size][column_size];

Figure 3.1 Two-dimensional array

Therefore, a two-dimensional m × n array is an array that contains m × n data elements and each

element is accessed using two subscripts, i and j, where i<=m and j<=n.

For example, if we want to store the marks obtained by three students in five different subjects, we can

declare a two-dimensional array as: int marks[3][5];

In the above statement, a two-dimensional array called marks has been declared that has m(3) rows

and n(5) columns.

 Data structure ITGS220

 + + Sheet 3

2

The pictorial form of a two-dimensional array is shown in Fig. 3.2.

Figure 3.2 Two-dimensional array

Hence, we see that a 2D array is treated as a collection of 1D arrays. Each row of a 2D array corresponds

to a 1D array consisting of n elements, where n is the number of columns. To understand this, we can

also see the representation of a two-dimensional array as shown in Fig. 3.3.

Figure 3.3 Representation of two-dimensional array marks[3][5]

Although we have shown a rectangular picture of a two-dimensional array, in the memory, these

elements actually will be stored sequentially.

There are two ways of storing a two-dimensional array in the memory:

• The first way is the row major order.

• The second way is the column major order.

Figure 3.4 Elements of a 3 × 4 2D array in row major order

Figure 3.5 Elements of a 4 × 3 2D array in column major order

 Data structure ITGS220

 + + Sheet 3

3

In one-dimensional arrays, we have seen that the computer does not keep track of the address of every

element in the array. It stores only the address of the first element and calculates the address of other

elements from the base address (address of the first element).

Same is the case with a two-dimensional array. Here also, the computer stores the base address, and

the address of the other elements is calculated using the following formula:

 If the array elements are stored in column major order,

Address(A[I][J]) = Base_Address + w{M (J – 1) + (I – 1)}

 And if the array elements are stored in row major order,

Address(A[I][J]) = Base_Address + w{N (I – 1) + (J – 1)}

where

w is the number of bytes required to store one element,

N is the number of columns,

M is the number of rows,

and I and J are the subscripts of the array element.

Example 3.1 : Consider a 20 × 5 two-dimensional array marks which has its base address = 1000 and the

size of an element = 2. Now compute the address of the element, marks[18][4] assuming that the

elements are stored in row major order.

Solution

Address(A[I][J]) = Base_Address + w{N (I – 1) + (J – 1)}

Address(marks[18][4]) = 1000 + 2 {5(18 – 1) + (4 – 1)}

 = 1000 + 2 {5(17) + 3}

 = 1000 + 2 (88)

 = 1000 + 176

 = 1176

 Data structure ITGS220

 + + Sheet 3

4

3.2 Initializing Two-dimensional Arrays

Like in the case of other variables, declaring a two-dimensional array only reserves space for the array in

the memory. No values are stored in it. A two-dimensional array is initialized in the same way as a one-

dimensional array is initialized. For example,

Int marks[2][3]={90, 87, 78, 68, 62, 71};

Note that the initialization of a two-dimensional array is done row by row. The above statement can also

be written as:

Int marks[2][3]={{90,87,78},{68, 62, 71}};

The above two-dimensional array has two rows and three columns. First, the elements in the first row

are initialized and then the elements of the second row are initialized.

Therefore, marks[0][0] = 90 marks[0][1] = 87 marks[0][2] = 78

 marks[1][0] = 68 marks[1][1] = 62 marks[1][2] = 71

In the above example, each row is defined as a one-dimensional array of three elements that are

enclosed in braces. Note that the commas are used to separate the elements in the row as well as to

separate the elements of two rows.

In case of one-dimensional arrays, we have discussed that if the array is completely initialized, we may

omit the size of the array. The same concept can be applied to a two-dimensional array, except that only

the size of the first dimension can be omitted. Therefore, the declaration statement given below is valid.

Int marks[][3]={{90,87,78},{68, 62, 71}};

In order to initialize the entire two-dimensional array to zeros, simply specify the first value as zero. That

is,

Int marks[2][3] = {0};

3.3 Accessing the Elements of Two-dimensional Arrays

The elements of a 2D array are stored in contiguous memory locations. In case of one-dimensional

arrays, we used a single for loop to vary the index i in every pass, so that all the elements could be

scanned.

Since the two-dimensional array contains two subscripts, we will use two for loops to scan the elements.

The first for loop will scan each row in the 2D array and the second for loop will scan individual columns

 Data structure ITGS220

 + + Sheet 3

5

for every row in the array. Look at the programs which use two for loops to access the elements of a 2D

array.

3.4 OPERATIONS ON TWO-DIMENSIONAL ARRAYS

Two-dimensional arrays can be used to implement the mathematical concept of matrices. In

mathematics, a matrix is a grid of numbers, arranged in rows and columns. Thus, using twodimensional

arrays, we can perform the following operations on an m×n matrix:

• Transpose: Transpose of an m×n matrix A is given as a n×m matrix B, where 𝑩𝒊,𝒋 = 𝑨𝒋,𝒊.

• Sum: Two matrices that are compatible with each other can be added together, storing the result

in the third matrix. Two matrices are said to be compatible when they have the same number of

rows and columns. The elements of two matrices can be added by writing:

𝑪𝒊,𝒋 = 𝑨𝒊,𝒋 + 𝑩𝒊,𝒋

• Difference: Two matrices that are compatible with each other can be subtracted, storing the

result in the third matrix. Two matrices are said to be compatible when they have the same number

of rows and columns. The elements of two matrices can be subtracted by writing:

𝑪𝒊,𝒋 = 𝑨𝒊,𝒋 - 𝑩𝒊,𝒋

 Data structure ITGS220

 + + Sheet 3

6

• Product: Two matrices can be multiplied with each other if the number of columns in the first

matrix is equal to the number of rows in the second matrix. Therefore, m × n matrix A can be

multiplied with a p × q matrix B if n=p. The dimension of the product matrix is m × q. The elements

of two matrices can be multiplied by writing:

𝑪𝒊,𝒋 = ∑ 𝑨𝒊,𝒌 𝑩𝒌,𝒋 for k=1 to n

 Data structure ITGS220

 + + Sheet 3

7

 Data structure ITGS220

 + + Sheet 3

8

 Data structure ITGS220

 + + Sheet 3

9

 Data structure ITGS220

 + + Sheet 3

10

