Glogleoll Ayidli Auls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll
Sheet 3 eloll + B9ull e 2 uill + §polaoll yailo : Wilogleoll ;a0

TWO-DIMENSIONAL ARRAYS

Till now, we have only discussed one-dimensional arrays. One-dimensional arrays are organized linearly
in only one direction. But at times, we need to store data in the form of grids or tables. Here, the
concept of single-dimension arrays is extended to incorporate two-dimensional data structures.

A two-dimensional array is specified using two subscripts where the first subscript denotes the row and
the second denotes the column. The C compiler treats a two-dimensional array as an array of one-
dimensional arrays.

Figure 3.1 shows a two-dimensional array which can be viewed as an array of arrays.

3.1 Declaring Two-dimensional Arrays

Any array must be declared before being used. The declaration statement tells the compiler the name of
the array, the data type of each element in the array, and the size of each dimension. A two-
dimensional array is declared as:

data_type array_name[row_size][column_size];

First
dimension

Second dimension

Figure 3.1 Two-dimensional array

Therefore, a two-dimensional m x n array is an array that contains m x n data elements and each
element is accessed using two subscripts, i and j, where i<=m and j<=n.

For example, if we want to store the marks obtained by three students in five different subjects, we can
declare a two-dimensional array as: int marks[3][5];

In the above statement, a two-dimensional array called marks has been declared that has m(3) rows
and n(5) columns.

©logleoll Ayl Ayl

Sheet 3

ITGS220 : ,doll jo,

Data structure &bl «usSlyi : ,,d0ll

> waoll gaua clég i : polaoll
o)l + 8,9uil le 2yl + §plaoll yadlo : Wlogleoll ;aa0

The pictorial form of a two-dimensional array is shown in Fig. 3.2.

Rows Col 0 Col 1 Col 2 Col 3 Col 4
Columns
Row 0 marks[0][0] marks[0][1] marks[0][2] marks[0][3] marks[0][4]
Row 1 marks[1][0] marks[1][1] marks[1][2] marks[1][3] marks[1][4]
Row 2 marks[2][0] marks[2][1] marks[2][2] marks[2][3] marks[2][4]

Figure 3.2 Two-dimensional array

Hence, we see that a 2D array is treated as a collection of 1D arrays. Each row of a 2D array corresponds
to a 1D array consisting of n elements, where n is the number of columns. To understand this, we can
also see the representation of a two-dimensional array as shown in Fig. 3.3.

marks[0] - ‘ marks[0] | marks[1] ‘ marks[2] | marks[3] | marks[4] |
marks[1] - \ marks[0] | marks[1] ‘ marks[2] | marks[3] | marks[4] |
marks[2] - ‘ marks[0] | marks[1] ‘ marks[2] | marks[3] | marks[4] |

Figure 3.3 Representation of two-dimensional array marks[3][5]

Although we have shown a rectangular picture of a two-dimensional array, in the memory, these
elements actually will be stored sequentially.

There are two ways of storing a two-dimensional array in the memory:

e The first way is the row major order.
e The second way is the column major order.

- r r r r r fr & 1 [[|

(0,0) (0,1) (0,2) (0,3) (1,00 (1,1) (1,2) (1.3) (2,0) (2,1) (22) (2,3)

Figure 3.4 Elements of a 3 x 4 2D array in row major order

. r r r [[[[|

(0,0) (1,0) (2,00 (3,00 (0,1) (1,1) (21) (3,1) (0,2) (1.2) (2,2) (3.,2)

Figure 3.5 Elements of a 4 x 3 2D array in column major order

Glogleoll Ayidli Auls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll
Sheet 3 eloll + B9ull e 2 uill + §polaoll yailo : Wilogleoll ;a0

In one-dimensional arrays, we have seen that the computer does not keep track of the address of every
element in the array. It stores only the address of the first element and calculates the address of other
elements from the base address (address of the first element).

Same is the case with a two-dimensional array. Here also, the computer stores the base address, and
the address of the other elements is calculated using the following formula:

= If the array elements are stored in column major order,
Address(A[l][J]) = Base_Address + w{M (J —1) + (1- 1)}
= And if the array elements are stored in row major order,
Address(A[l][J]) = Base_Address + w{N (1 —-1) + (J - 1)}
where

w is the number of bytes required to store one element,
N is the number of columns,

M is the number of rows,

and | and J are the subscripts of the array element.

Example 3.1 : Consider a 20 x 5 two-dimensional array marks which has its base address = 1000 and the
size of an element = 2. Now compute the address of the element, marks[18][4] assuming that the
elements are stored in row major order.

Solution

Address(A[l][J]) = Base_Address + w{N (I-1) + (J - 1)}
Address(marks[18][4]) = 1000 + 2 {5(18 — 1) + (4 — 1)}
1000 + 2 {5(17) + 3}

1000 + 2 (88)

1000 + 176

1176

Glogleoll Ayidli Auls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll
Sheet 3 eloll + B9ull e 2 uill + §polaoll yailo : Wilogleoll ;a0

3.2 Initializing Two-dimensional Arrays

Like in the case of other variables, declaring a two-dimensional array only reserves space for the array in
the memory. No values are stored in it. A two-dimensional array is initialized in the same way as a one-
dimensional array is initialized. For example,

Int marks[2][3]={90, 87, 78, 68, 62, 71};

Note that the initialization of a two-dimensional array is done row by row. The above statement can also
be written as:

Int marks[2][3]={{90,87,78},{68, 62, 71}};

The above two-dimensional array has two rows and three columns. First, the elements in the first row
are initialized and then the elements of the second row are initialized.

Therefore, marks[0][0] = 90 marks[0][1]
marks[1][0] = 68 marks[1][1]

87 marks[0][2]
62 marks[1][2]

78
71

In the above example, each row is defined as a one-dimensional array of three elements that are
enclosed in braces. Note that the commas are used to separate the elements in the row as well as to
separate the elements of two rows.

In case of one-dimensional arrays, we have discussed that if the array is completely initialized, we may
omit the size of the array. The same concept can be applied to a two-dimensional array, except that only
the size of the first dimension can be omitted. Therefore, the declaration statement given below is valid.

Int marks[][3]={{90,87,78},{68, 62, 71}};

In order to initialize the entire two-dimensional array to zeros, simply specify the first value as zero. That
is,

Int marks[2][3] = {0};

3.3 Accessing the Elements of Two-dimensional Arrays

The elements of a 2D array are stored in contiguous memory locations. In case of one-dimensional
arrays, we used a single for loop to vary the index i in every pass, so that all the elements could be
scanned.

Since the two-dimensional array contains two subscripts, we will use two for loops to scan the elements.
The first for loop will scan each row in the 2D array and the second for loop will scan individual columns

4

Wl ogleoll Asidi Asls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll
Sheet 3 elyoll + by9ull e 2l + Bpolaoll yadlo : Wlogleoll yaa0

for every row in the array. Look at the programs which use two for loops to access the elements of a 2D
array.

Procramming ExampLES

16. Write a program to print the elements of a 2D array.

#include <stdio.h>
#include <conio.h>
int main()

{
int arr[2][2] = {12, 34, 56,32};
int i, j;
for(i=0;i<2;i++)
{
printf("\n");
for(j=0;j<2;j++)
printf("%d\t", arr[i][j]1);
}
return 0;
}
Output
12 34
56 32

3.4 OPERATIONS ON TWO-DIMENSIONAL ARRAYS

Two-dimensional arrays can be used to implement the mathematical concept of matrices. In
mathematics, a matrix is a grid of numbers, arranged in rows and columns. Thus, using twodimensional
arrays, we can perform the following operations on an mxn matrix:

e Transpose: Transpose of an mxn matrix A is given as a nxm matrix B, where B;j=A4;;.

e Sum: Two matrices that are compatible with each other can be added together, storing the result

in the third matrix. Two matrices are said to be compatible when they have the same number of

rows and columns. The elements of two matrices can be added by writing:

Ci,j = Ai,j + Bi,]'

¢ Difference: Two matrices that are compatible with each other can be subtracted, storing the

result in the third matrix. Two matrices are said to be compatible when they have the same number

of rows and columns. The elements of two matrices can be subtracted by writing:

Cij= Aij - Bij

Wl ogleoll Asidi Asls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll
Sheet 3 elyoll + by9ull e 2l + Bpolaoll yadlo : Wlogleoll yaa0

e Product: Two matrices can be multiplied with each other if the number of columns in the first

matrix is equal to the number of rows in the second matrix. Therefore, m x n matrix A can be
multiplied with a p x @ matrix B if n=p. The dimension of the product matrix is m x g. The elements

of two matrices can be multiplied by writing:

Cij= YAy By for k=1 to n

ProcrRammiNG ExampLes

20. Write a program to read and display a 33 matrix.

#include <stdio.h>
#include <conio.h>
int main()
{
int i, j, mat[3][3];
clrscr();
printf{"\n Enter the elements of the matrix ");
for{i=0;i<3;i++)
{
for(j=0;j<3;j++)

scanf("%d",&mat[1][§]);

}
}

printf("\n The elements of the matrix are ");
for{i=0;i<3;i++)

{
printf("\n"};
for({j=0;§<3;3++)
printf("\t %d",mat[i][]j]);
1
return 0}
X
Output

Enter the elements of the matrix
1234567839

The elements of the matrix are
123

456

789

Ologleoll Aidi fiys ITGS220 : , ol 50,

Sheet 3

Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll

gloll + Bl Jle 2yl + Bpolaoll paily : Slogleoll ,ua0

21.

Write a program to transpose a 3 3 matrix.

#include <stdio.h>
#include <conio.h>
int main()

{

¥

Qutput

Enter the elements of the matrix
123456780

The elements of the matrix are

123
456
7809

int i, j, mat[3][3], transposed_mat[3][3];
clrscr();
printf("\n Enter the elements of the matrix ");
for(i=0;i<3;i++)
{

for{j=0;j<3;j++)

scanf("%d", &mat[i][j]);
}
1
printf("\n The elements of the matrix are ");
for(i=0;i<3;i++)

{
printf("\n");
for{j=0;j<3;j++)
printf("\t %d", mat[i][3]);
s
for(i=0;i<3;i++)
{
for{j=0;j<3;j++)
transposed_mat[i][j] = mat[j][i];
y

printf("\n The elements of the transposed matrix are ");
for(i=0;ic3;i++)

{
printf("\n");
for(j=0;j¢<3;j++)
printf{"\t %d",transposed_ mat[i][j])};
1
return 0;

The elements of the transposed matrix are

147
258
369

©logleoll Ayl Ayl

Sheet 3

ITGS220 : ,,do0ll jo, Data structure &bl «usSlyi : ,,d0ll

> waoll gaua clég i : polaoll
o)l + 8,9uil le 2yl + §plaoll yadlo : Wlogleoll ;aa0

12, Wnte a program to input two m =« n matrices and then calculate the sum of their
comesponding elements and store 1t in a third m = n matnx.

#include <stdio.h>
#include <conio.h»
int main(}

{

int i, §;

int rowsl, colsl, rowsd, colsd;, rows sum, cols sum;

int mati[5][5], mat2[5][5],
clrser();

primtf{*wn Enter the number
scanf [“Xd" ,Erowsl);
printf{*'wn Enter the number
scanf [“X¥d" ,Ecolsl);
primtf{*wn Enter the number
scanf (| “X¥d" . Brows);
primtf{*wn Enter the number
scanf [“Xd" ,Ecolsd);

sum[5][5];
of rows in
of columns
of rows in

of columns

if(rowsl != rows2 || colsl !s cols)

{

the first matrix - *);
in the first matrix : *);
the second matrix - ");

in the second matrix = *);

printf{“%n Number of rows and coluwns of both matrices must be equal®);

getch();
exit{);
¥
rowWs_sum & rowsl;
cols_sum = colsl;

primtf{*wn Enter the elements of the first matrix “);

for{i=0;icrowsl;it+s)
1
for(§=0; jioolsl; j++)
1
scanf(“Xd" Emati[i]1[§]1};
}
}
printf{*'yn Enter the element: of the second matrix “");
for{i=0; icrowsd ;i+s)
1
Faor{j=0; jcools2; j++)
{
scanf({ "Xd” Emat2[1][§]};
¥
}

For{i=0; i<rows_sum;it++)

{

Faor{j=0; jccols_sum;j++)
sum[L][j] = matd[Li][] + matZ[1][§],

b

printf{*wn The elements of the resultant matrix are ®);

For{i=0; i<rows_sum;i++)
!
printf(*\n");

for(j=0; j<cols_sum;j++)

printt{~\t 2d4-,

}

return 0;

suma]33

©logleoll Ayl Ayl

ITGS220 : ,,do0ll jo, Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll

Sheet 3 eloll + 8,9ull e a,ill + Bolaoll yaily : Cilogleoll ;aa0

Output
Enter the number of rows in the first matrix: 2
Enter the number of columns in the first matrix: 2
Enter the number of rows in the second matrix: 2
Enter the number of columns in the second matrix: 2
Enter the elements of the first matrix
1234
Enter the elements of the second matrix
5678
The elements of the resultant matrix are
6 B
10 12

2},

Write a program to multiply two m = n matrices.

finclude <stdio.h»
finclude <conio.h>

int main()

int £, §, k;

int Powsl, colsl, rows2, cols2, res_rows, res_cols;

int matl[s5][5], mat2[5])[5], res[5][5]);

clrser();

printf(“\n Enter the number of rows in the Arst matrix @ =)
scanf(“%d", Erowsl) ;

printf("\n Enter the number of columns in the frst matrdix @ “);
scanf(~%d", &colsl);

printf(“\n Enter the number of rows in the second matrlx @ ")
scanf(“%d", Brows2);

printf(“\n Enter the number of columns in the second matrix : “);
scanf(“%d", Bcols2);

1f{colsl = Fows2)

{

}

rEs_rows

printf(*\n The number of coelumns in the first matrix must be equal
to the nuaber of rows in the second matrix™);

getch();

exitf):

= rowsl;

res_cols = cols2;
printf(“\n Enter the elements of the first matrix *);
for(i=0;icroms];ivs)

}

for{j=0;j<colsl;i++)

scanf{ “%d=, Emat1[1][1]1);
}

printf(“\n Enter the elements of the second matrix “);
for{i=0;icroms2;i++)

for{§=0;j<colsd;i++)

scanf("%d", Smat2[1][1]);
}

for{i=0;icres_rows;i++)

for{j=0;j<res_cols;j++)

Glogleoll Ayidli Auls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll

> waoll gaua clég i : polaoll

Sheet 3 elyoll + Bygumill Hle)il + §polagll yasle : Wlogleoll jua0
{
res[1][1]=0;
for(k=0; k<res_cols;k+s)
res[1][q] += mat1[i][k] * mat2[k][1];
}
1
printf{*wn The elements of the product matrix are “);
for{i=0;i<res_rows;is+)
{
printf(“Wn");
frar{i=N:jcrag_rala;jes)
printf("\t %d",res[1]1[1]);
¥
return O;
}
Output

Enter the number of rows in the Arst matrix: 2
Enter the aumber of columns in the Arst matrix: 2
Entar tha Aunber of rowe Ln the cecond matrim: 2
Enter the number of columns im the second matrix: 2
Enter the elements of the first matrix

1234

Enter the elements of the second matrix

56 7B

The elements of the produect matrix are

19 22
43 50

10

