
10/19/2024

1

TUTORIAL
BY MAI ELBAABAA

10/19/2024

2

 Rules of thumb

 in describing the asymptotic complexity of an algorithm:

 If the running time is the sum of multiple terms, keep the one with the largest growth rate

and drop the others, since they will not have an impact for large

 If the remaining term is a product, drop any multiplicative constants

MATH BACKGROUND: EXPONENTS

 Some useful identities:

 XA · XB = XA+B

 XA / XB = XA-B

 (XA)B = XAB

 XN + XN = 2XN

 2N + 2N = 2N+1

10/19/2024

3

MATH BACKGROUND: LOGARITHMS

 Logarithms

 definition: XA = B if and only if logX B = A

 intuition: logX B means:

"the power X must be raised to, to get B"

 In this course, a logarithm with no base implies base 2.

log B means log2 B

 Examples

 log2 16 = 4 (because 24 = 16)

 log10 1000 = 3 (because 103 = 1000)

 O(1): Time complexity of a function (or set of statements) is considered as O(1)

if it doesn’t contain loop, recursion, and call to any other non-constant time

function.

 O(n): Time Complexity of a loop is considered as O(n) if the loop variables are

incremented/decremented by a constant amount. For example following

functions have O(n) time complexity.

// Here c is a positive integer constant

for (int i = 1; i <= n; i += c) {

// some O(1) expressions

}

10/19/2024

4

 O(nc): Time complexity of nested loops is equal to the number of

times the innermost statement is executed. For example, the

following sample loops have O(n2) time complexity

for (int i = 1; i <=n; i += c) {

for (int j = 1; j <=n; j += c) {

// some O(1) expressions

}

}

for (int i = n; i > 0; i -= c) {

for (int j = i+1; j <=n; j += c) {

// some O(1) expressions

}

 O(Logn) Time Complexity of a loop is considered as O(Logn) if the

loop variables are divided/multiplied by a constant amount.

for (int i = 1; i <=n; i *= c) {

// some O(1) expressions

}

for (int i = n; i > 0; i /= c) {

// some O(1) expressions

}

10/19/2024

5

 What is the exact runtime and complexity class (Big-Oh)?

int sum = 0;
for (int i = 1; i <= N; i += c) {

sum++;
}

 Runtime = N / c = O(N).

int sum = 0;
for (int i = 1; i <= N; i *= c) {

sum++;
}

 Runtime = logc N = O(log N).

Call this number of multiplications "x".

2x = N

x = log2 N

10/19/2024

6

for (int i = 1; i < n; i *= k) {

// some constant time operations

}

EXAMPLE: O(N²)

outer loop will run n/3 times
inner loop will run n/4 times
so total time complexity is (n/3)*(n/4)=n²/12=O(n²)

10/19/2024

7

 What is the exact runtime complexity (Big-Oh)?
int sum = 0;
for (int i = 1; i <= N; i++) {

for (int j = 1; j <= 2*N; j++) {
sum++;

}
} Runtime = N · 2N = O(N^2).

int sum = 0;
for (int i = 1; i <= N; i++) {

for (int j = 1; j <= i; j++) {
sum++;

}
}
 Runtime = N (N + 1) / 2 = O(N^2).

 Here, the outer loop performs n iterations, and the inner loop performs i iterations for each iteration of
the outer loop, where i is the current iteration count of the outer loop. The total number of iterations
performed by the inner loop can be calculated by summing the number of iterations performed in each
iteration of the outer loop, which is given by the formula sum(i) from i=1 to n, which is equal to n * (n +
1) / 2. Hence, the total time complex

10/19/2024

8

if (value % 2 == 0){

return true;

}

else

return false;

}

Answer: O(1). Constant run time complexity.

Because you're only ever taking one value, there is no "loop" to go through.

for (let i=0; i<array.length; i++) {

if (array[i] === item) {

return i;

}

}

Answer: O(n). Linear run time complexity.

10/19/2024

9

HOW TO FIND COMPLEXITY?

Some rules of thumb

Basically just count the number of statements executed:

 If there are only a small number of simple statements in a program —

O(1)

 If there is a ‘for’ loop dictated by a loop index that goes up to n — O(n)

 If there is a nested ‘for’ loop with outer one controlled by n and the inner

one controlled by m — O(n*m)

 For a loop with a range of values n, and each iteration reduces the range by

a fixed constant fraction (eg: ½) — O(log n)

