Java GUI Libraries

Swing Programming

Swing Components

« Swing is a collection of libraries that contains
primitive wiagets or controls used for designing
Graphical User Interfaces (GUIS).

« Commonly used classes In javax.swing package:

— JButton, JTextBox, JTextArea, JPanel, JFrame, JMenu,
JSlider, JLabel, Jicon, ...

— There are many, many such classes to do anything
Imaginable with GUIs

— Here we only study the basic architecture and do simple
examples

Swing components, cont.

« Each component is a Java class with a fairly extensive
Inheritency hierarchy:

Object
Component
Cont;ainer
JComE)onent Winldow
JPanel Frame

JFrame

Using Swing Components

* Very simple, just create object from
appropriate class — examples:

— JButton but = new JButton();

— JTextField text = new JTextField();
— JTextArea text = new JTextArea();
— JLabel lab = new JLabel();

Adding components

« Once a component Is created, it can be added to a
container by calling the container’s add method:

Container cp = getContentPane(); This is required
cp.add(new JButton(“cancel’));

cp.add(new JButton(““go™));

How these are laid out is determined by the layout
managetr.

Laying out components

 Not so difficult but takes a little practice

* Do not use absolute positioning — not very
portable, does not resize well, etc.

Laying out components

« Use layout managers — basically tells form how to
align components when they’re added.

« Each Container has a layout manager associated
with it.

« A JPanel is a Container — to have different layout
managers associated with different parts of a form,
tile with JPanels and set the desired layout
manager for each JPanel, then add components
directly to panels.

Layout Managers

 Java comes with 7 managers. Most common
and easlest to use are
— FlowLayout
— BorderLayout
— GridLayout

 Using just these three it Is possible to attain
fairly precise layout for most simple
applications.

Setting layout managers

* Very easy to associate a layout manager with a

component. Simply call the setLayout method on
the Container:

JPanel p1 = new JPanel();
pl.setLayout(new FlowLayout(FlowLayout.LEFT));

JPanel p2 = new JPanel();
p2.setLayout(new BorderLayout());

As Components are added to the container, the layout
manager determines their size and positioning.

Event handling

What are events?

 All components can listen for one or more events.

» Typical examples are:
— Mouse movements
— Mouse clicks
— Hitting any key
— Hitting return key
— etc.

« Telling the GUI what to do when a particular
event occurs IS the role of the event handler.

ActionEvent

In Java, most components have a special
event called an ActionEvent

This i1s loosely speaking the most common
or canonical event for that component.

A good example is a click for a button.

To have any component listen for
ActionEvents, you must register the
component with an ActionListener. e.g.

— button.addActionListener(new MyAL()):;

Delegation, cont.

This is referred to as the Delegation Model.

When you register an ActionListener with a
component, you must pass It the class which
will handle the event — that is, do the work
when the event is triggered.

For an ActionEvent, this class must
Implement the ActionListener interface.

This 1s simple a way of guaranteeing that
the actionPerformed method is defined.

actionPerformed

» The actionPerformed method has the following
signature:

void actionPerformed(ActionEvent)

» The object of type ActionEvent passed to the
event handler is used to query information about
the event.

« Some common methods are:
— getSource()
 object reference to component generating event

— getActionCommand()
 some text associated with event (text on button, etc).

actionPerformed, cont.

» These methods are particularly useful when
using one eventhandler for multiple
components.

You're not limited to ActionListener
Each type of event represented by a class

Component responds to an event by
making an event object and calling each

“listener” registered for that event

An event listener implements a particular
listener interface using an inner class

addXXXListener() adds a listener to

your component, removeXXXListener()
un-registers it

Event, listener interface
and add- and remove-
methods

Components supporting this
event

ActionEvent
ActionListener
addActionListener()
removeActionListener()

JButton, JList, JTextField,
JMenultem and its derivatives
including JCheckB oxMenultem,
JMenu, and JpopupMenu.

AdjustmentEvent
AdjustmentListener
addAdjustmentListener()
removeAdjustmentListener()

JScrollbar
and anything you create that
implements the Adjustable interface.

ComponentEvent
ComponentListener
addComponentListener()
removeComponentListener()

*Component and its derivatives,
including JButton, JCanvas,
JCheckBox, JComboBox,
Container, JPanel, JApplet,
JScrollPane, Window, JDialog,
JFileDialog, JFrame, JLabel, JList,
JScrollbar, JTextArea, and
JTextField.

ContainerEvent
ContainerListener
addContainerListener()
removeContainerListener({)

Container and its derivatives,
including JPanel, JApplet,
JScrollPane, Window, JDialog,
JFileDialog, and JFrame.

FocusEvent
FocusListener
addFocusListener()
removeF ocusListener()

Component and derivatives™.

TextEvent
TextListener
addTextListener()
removeTextListener()

Anything derived from
JTextComponent, including
JTextArea and JTextField.

KeyEvent
KeyListener
addKeyListener()
removeKeyListener()

Component and derivatives™.

MouseEvent (for both clicks and
motion)

MouseListener
addMouseListener()
removelMouseLlistener()

Component and derivatives™.

MouseEvent (for both clicks and
motion)

MouseMotionListener
addMouseMotionListener()
removeMouseMotionListener()

Component and derivatives™.

WindowEvent
WindowListener

addWindowListener()
removeWindowListener()

Window and its derivatives,
including JDialog, JFileDialog, and
JFrame.

temEvent
ltemListener
additemListener()
removeltemListener()

JCheckBox,
JCheckBoxMenultem,
JComboBox, JList, and anything
that implements the ltemSelectable
interface.

Listener interface
w/ adapter

Methods in interface

ActionListener

actionPerformed{ActionEvent)

AdjustmentListener

adjustmentValueChanged(
AdjustmentEvent)

ComponentListener
ComponentAdapter

componentHidden(ComponentEvent)
componentShown({ComponentEvent)
componentMoved(ComponentEvent)
componentResized{ComponentEvent)

ContainerListener
ContainerAdapter

componentAdded({ContainerEvent)
componentRemoved(ContainerEvent)

FocusListener
FocusAdapter

focusGained{FocusEvent)
focusLost(FocusEvent)

KeyListener
KeyAdapter

keyPressed(KeyEvent)
keyReleased(KeyEvent)
keyTyped(KeyEvent)

MouseListener
MouseAdapter

mouseClicked{MouseEvent)
mouseEntered(MouseEvent)
mouseExited(MouseEvent)
mousePressed{MouseEvent)
mouseReleased{MouseEvent)

MouseMotionListener
MouseMotionAdapter

mouseDragged(MouseEvent)
mouseMoved{MouseEvent)

WindowListener
WindowAdapter

windowOpened{WindowE vent)
windowClosing(WindowEvent)

windowClosed(WindowEvent)
windowActivated(WindowEvent)
windowDeactivated{WindowEvent)
windowlconified(WindowEvent)
windowDeiconified{WindowEvent)

itemListener

itemStateChanged(ltemEvent)

Simplest GUI

Import javax.swing.JFrame;
public class SimpleGUI extends Jframe

{
public SimpleGUI()

{

setSize(400,400); //set frames size in pixels
setDefaultCloseOperation(EXIT_ON_CLOSE);
setVisible(ture);

}

public static void main(String[] args)

{
SimpleGUI gui = new SimpleGUI();

—

Another Simple GUI

Import javax.swing.*;
public class SimpleGUI extends JFrame{
public SimpleGUI(){
setSize(400,400); //set frames size in pixels
setDefaultCloseOperation(EXIT_ON_CLOSE);
JButton butl = new JButton(“Click me”);
Container cp = getContentPane();//must do this
cp.add(butl);
setVisible(true);

}

public static void main(String[] args)

{

SimpleGUI gui = new SimpleGUI();
}/ end main
}// end class

Add Layout Manager

Import javax.swing.*; import java.awt.”;
public class SimpleGUI extends JFrame{
public SimpleGUI(){
setSize(400,400); //set frames size in pixels
setDefaultCloseOperation(EXIT_ON_CLOSE);
JButton butl = new JButton(“Click me”);
Container cp = getContentPane();//must do this
cp.setLayout(new FlowLayout());
cp.add(butl);
setVisible(true);

}

public static void main(String[] args){
SimpleGUI gui = new SimpleGUI();

iy

Add event handler

Import javax.swing.*; import java.awt.*;
Public class SimpleGUI extends JFrame{
public SimpleGUI(){
setSize(400,400); //set frame size in pixels
setDefaultCloseOperation(EXIT_ON_CLOSE);
JButton butl = new JButton(“Click me”);
Container cp = getContentPane();//must do this
cp.setLayout(new FlowLayout();
butl.addActionListener(new MyActionListener());
cp.add(butl);
setVisible(true);
¥
public static void main(String[] args){
SimpleGUI gui = new SimpleGUI();

=

Event Handler Code

public class MyActionListener implements ActionListener{
public void actionPerformed(ActionEvent e){

JOptionPane.showMessageDialog(null, “I got clicked”);
¥

Add second button/event

class SimpleGUI extends JFrame{
public SimpleGUI(){

[* ... %
JButton butl = new JButton(“Click me™);
JButton but2 = new JButton(“exit™);
MyActionListener al = new MyActionListener();
butl.addActionListener(al);
but2.addActionListener(al);
cp.add(butl);
cp.add(but2);
setVisible(true);

How to distinguish events

class MyActionListener implents ActionListener{
public void actionPerformed(ActionEvent e){
Object source = e.getSource();
If(source == butl)

1
JOptionPane.showMessageDialog(null, “Butl is clicked”);

} else if (source == but2){
System.exit(0);

}

Putting It all together

» See LoginForm.java example in class notes

