
Java GUI Libraries

Swing Programming

Swing Components

• Swing is a collection of libraries that contains
primitive widgets or controls used for designing
Graphical User Interfaces (GUIs).

• Commonly used classes in javax.swing package:
– JButton, JTextBox, JTextArea, JPanel, JFrame, JMenu,

JSlider, JLabel, JIcon, …

– There are many, many such classes to do anything
imaginable with GUIs

– Here we only study the basic architecture and do simple
examples

Swing components, cont.

• Each component is a Java class with a fairly extensive

inheritency hierarchy:

Object

Component

Container

JComponent

JPanel

Window

Frame

JFrame

Using Swing Components

• Very simple, just create object from
appropriate class – examples:

– JButton but = new JButton();

– JTextField text = new JTextField();

– JTextArea text = new JTextArea();

– JLabel lab = new JLabel();

Adding components

• Once a component is created, it can be added to a

container by calling the container’s add method:

Container cp = getContentPane();

cp.add(new JButton(“cancel”));

cp.add(new JButton(“go”));

How these are laid out is determined by the layout

manager.

This is required

Laying out components

• Not so difficult but takes a little practice

• Do not use absolute positioning – not very

portable, does not resize well, etc.

Laying out components

• Use layout managers – basically tells form how to

align components when they’re added.

• Each Container has a layout manager associated

with it.

• A JPanel is a Container – to have different layout

managers associated with different parts of a form,

tile with JPanels and set the desired layout

manager for each JPanel, then add components

directly to panels.

Layout Managers

• Java comes with 7 managers. Most common

and easiest to use are

– FlowLayout

– BorderLayout

– GridLayout

• Using just these three it is possible to attain

fairly precise layout for most simple

applications.

Setting layout managers

• Very easy to associate a layout manager with a

component. Simply call the setLayout method on

the Container:

JPanel p1 = new JPanel();

p1.setLayout(new FlowLayout(FlowLayout.LEFT));

JPanel p2 = new JPanel();

p2.setLayout(new BorderLayout());

As Components are added to the container, the layout

manager determines their size and positioning.

Event handling

What are events?

• All components can listen for one or more events.

• Typical examples are:

– Mouse movements

– Mouse clicks

– Hitting any key

– Hitting return key

– etc.

• Telling the GUI what to do when a particular

event occurs is the role of the event handler.

ActionEvent

• In Java, most components have a special
event called an ActionEvent.

• This is loosely speaking the most common
or canonical event for that component.

• A good example is a click for a button.

• To have any component listen for
ActionEvents, you must register the
component with an ActionListener. e.g.

– button.addActionListener(new MyAL());

Delegation, cont.

• This is referred to as the Delegation Model.

• When you register an ActionListener with a
component, you must pass it the class which
will handle the event – that is, do the work
when the event is triggered.

• For an ActionEvent, this class must
implement the ActionListener interface.

• This is simple a way of guaranteeing that
the actionPerformed method is defined.

actionPerformed

• The actionPerformed method has the following
signature:

void actionPerformed(ActionEvent)

• The object of type ActionEvent passed to the
event handler is used to query information about
the event.

• Some common methods are:

– getSource()

• object reference to component generating event

– getActionCommand()

• some text associated with event (text on button, etc).

actionPerformed, cont.

• These methods are particularly useful when

using one eventhandler for multiple

components.

Simplest GUI
import javax.swing.JFrame;

public class SimpleGUI extends Jframe

{

public SimpleGUI()

{

setSize(400,400); //set frames size in pixels

setDefaultCloseOperation(EXIT_ON_CLOSE);

setVisible(ture);

}

public static void main(String[] args)

{

SimpleGUI gui = new SimpleGUI();

}

}

Another Simple GUI

import javax.swing.*;

public class SimpleGUI extends JFrame{

public SimpleGUI(){

setSize(400,400); //set frames size in pixels

setDefaultCloseOperation(EXIT_ON_CLOSE);

JButton but1 = new JButton(“Click me”);

Container cp = getContentPane();//must do this

cp.add(but1);

setVisible(true);

}

public static void main(String[] args)

{

SimpleGUI gui = new SimpleGUI();

}// end main

}// end class

Add Layout Manager

import javax.swing.*; import java.awt.*;

public class SimpleGUI extends JFrame{

public SimpleGUI(){

setSize(400,400); //set frames size in pixels

setDefaultCloseOperation(EXIT_ON_CLOSE);

JButton but1 = new JButton(“Click me”);

Container cp = getContentPane();//must do this

cp.setLayout(new FlowLayout());

cp.add(but1);

setVisible(true);

}

public static void main(String[] args){

SimpleGUI gui = new SimpleGUI();

}}

Add event handler
import javax.swing.*; import java.awt.*;

Public class SimpleGUI extends JFrame{

public SimpleGUI(){

setSize(400,400); //set frame size in pixels

setDefaultCloseOperation(EXIT_ON_CLOSE);

JButton but1 = new JButton(“Click me”);

Container cp = getContentPane();//must do this

cp.setLayout(new FlowLayout();

but1.addActionListener(new MyActionListener());

cp.add(but1);

setVisible(true);

}

public static void main(String[] args){

SimpleGUI gui = new SimpleGUI();

}

}

Event Handler Code

public class MyActionListener implements ActionListener{

public void actionPerformed(ActionEvent e){

JOptionPane.showMessageDialog(null, “I got clicked”);

}

}

Add second button/event

class SimpleGUI extends JFrame{

public SimpleGUI(){

/* */

JButton but1 = new JButton(“Click me”);

JButton but2 = new JButton(“exit”);

MyActionListener al = new MyActionListener();

but1.addActionListener(al);

but2.addActionListener(al);

cp.add(but1);

cp.add(but2);

setVisible(true);

}

}

How to distinguish events

class MyActionListener implents ActionListener{

public void actionPerformed(ActionEvent e){

Object source = e.getSource();

if(source == but1)

{

JOptionPane.showMessageDialog(null, “But1 is clicked”);

} else if (source == but2){

System.exit(0);

}

}

Putting it all together

• See LoginForm.java example in class notes

