
 13من 1الصفحة

Lecture 3: Structures

In this lecture, the following topics are covered:

 The concept of structure in C

 Arrays of Structures

 Structures and Functions

 Self-Referential Structures

1. The Concept of Structure in C

 Structure is basically a user-defined data type that can store related

information (even of different data types) together.

 The major difference between a structure and an array is that an array

can store only information of same data type.

 A structure is therefore a collection of variables under a single name.

 The variables within a structure are of different data types and each

has a name that is used to select it from the structure

1.1 Structure Declaration

 A structure is declared using the keyword struct followed by the

structure name.

 All the variables of the structure are declared within the structure.

 A structure type is generally declared by using the following syntax:

 struct struct–name {

 data_type var–name;

 data_type var–name;

 };

 13من 2الصفحة

For example, if we have to define a structure for a student, then the

related information for a student probably would be: id_num, name,

course, and fees. This structure can be declared as:

struct student {
 int id_num;

char name[20];
char course[20];
float fees;

};

 Now the structure has become a user-defined data type.

 Each variable name declared within a structure is called a member

of the structure.

 The structure declaration, however, does not allocate any memory

or consume storage space. It just gives a template that conveys to

the C compiler how the structure would be laid out in the memory

and also gives the details of member names.

 Like any other data type, memory is allocated for the structure

when we declare a variable of the structure.

For example, we can define a variable of student by writing:

struct student stud1;

Here, struct student is a data type and stud1 is a variable.

 Look at another way of declaring variables. In the following syntax,

the variables are declared at the time of structure declaration.

 struct student {
 int id_num;

char name[20];
char course[20];
float fees;

} stud1, stud2;

In this declaration we declare two variables stud1 and stud2 of the

structure student. So if you want to declare more than one variable

of the structure, then separate the variables using a comma.

When we declare variables of the structure, separate memory is

allocated for each variable.

*Structure type and variable declaration of a structure can be either

local or global depending on their placement in the code

 13من 3الصفحة

1.2 Typedef Declarations

 The typedef (derived from type definition) keyword enables the

programmer to create a new data type name by using an existing

data type.

 By using typedef, no new data is created, rather an alternate name

is given to a known data type.

 The general syntax of using the typedef keyword is given as:

typedef existing_data_type new_data_type;

 Note that typedef statement does not occupy any memory; it

simply defines a new type.

 For example, if we write typedef int INTEGER; then INTEGER is the

new name of data type int.

 To declare variables using the new data type name, precede the

variable name with the data type name (new). Therefore, to define

an integer variable, we may now write INTEGER num=5;

 When we precede a struct name with the typedef keyword, then
the struct becomes a new type. It is used to make the construct
shorter with more meaningful names for types already defined by
C or for types that you have declared. For example, consider the
following declaration:

typedef struct student {

 int id_num;

char name[20];

char course[20];

float fees;

};

Now that you have preceded the structure’s name with the typedef
keyword, student becomes a new data type. Therefore, now you can
straightaway declare the variables of this new data type as you declare
the variables of type int, float, char, double, etc. To declare a variable of
structure student, you may write

student stud1;
Note that we have not written struct student stud1.

1.3 Initialization of Structures

 13من 4الصفحة

 A structure can be initialized in the same way as other data types

are initialized.

 Initializing a structure means assigning some constants to the

members of the structure.

 When the user does not explicitly initialize the structure, then C

automatically does it. For int and float members, the values are

initialized to zero, and char and string members are initialized to

'\0' by default.

 The initializers are enclosed in braces and are separated by

commas. However, care must be taken to ensure that the

initializers match their corresponding types in the structure

definition.

 The general syntax to initialize a structure variable is as follows:

For example, we can initialize a student structure by writing,

 struct student {
 int id_num;

char name[20];
char course[20];
float fees;

} stud1 = {120, "Ahmed Ali", "B.Sc in IT", 2500.500};

Or, by writing,

 13من 5الصفحة

struct student stud1 = {120, "Ahmed Ali", "B.Sc in IT", 2500.500};

1.4 Accessing the Members of a Structure

 Each member of a structure can be used just like a normal

variable, but its name will be a bit longer. A structure member

variable is generally accessed using a '.' (dot) operator. The

syntax of accessing a structure or a member of a structure can

be given as: struct_var.member_name

 The dot operator is used to select a particular member of the

structure. For example, to assign values to the individual data

members of the structure variable stud1, we may write:

stud1.id_num = 125;

stud1.name = "Mohammed Ali";

stud1.course = " B.Sc in Web Tech";

stud1.fees = 3500.500;

 To input values for data members of the structure variable

stud1, we may write:

 scanf ("%d", & stud1.id_num);

 scanf ("%s", stud1.name);

 Similarly, to print the values of structure variable stud1, we may

write:

 printf ("%s", stud1.course);

 printf ("%f", stud1.fees);

1.5 Copying and Comparing Structures

 We can assign a structure to another structure of the same type.

For example, if we have two structure variables stud1 and stud2

of type struct student given as:

 struct student stud1 = {120, "Ahmed Ali", "B.Sc in IT", 2500.500};

 struct student stud2;

Then to assign one structure variable to another, we will write

stud2 = stud1;

 13من 6الصفحة

This statement initializes the members of stud2 with the values of

members of stud1. Therefore, now the values of stud1 and stud2

can be given as shown in the following Figure:

 C does not permit comparison of one structure variable with

another. However, individual members of one structure can be

compared with individual members of another structure. When

we compare one structure member with another structure’s

member, the comparison will behave like any other ordinary

variable comparison. For example, to compare the fees of two

students, we will write:

If (stud1.fees > stud2.fees)

 An error will be generated if you try to compare two structure

variables.

1.6 Nested structures

 A structure can be placed within another structure, i.e., a structure

may contain another structure as its member.

 A structure that contains another structure as its member is called a

nested structure.

 Although it is possible to declare a nested structure with one

declaration, it is not recommended.

 The easier and clearer way is to declare the structures separately and

then group them in the higher level structure. When you do this, take

care to check that nesting must be done from inside out (from lowest

level to the most inclusive level), i.e., declare the innermost structure,

Id_num

Id_num

 13من 7الصفحة

then the next level structure, working towards the outer (most

inclusive) structure.

In this example, we see that the structure student contains two

other structures, NAME and DATE. Both these structures have their

own fields. The structure NAME has three fields: first_name,

mid_name, and last_name. The structure DATE also has three

fields: dd, mm, and yy, which specify the day, month, and year of

the date. Now, to assign values to the structure fields, we will write:

 In case of nested structures, we use the dot operator in conjunction

with the structure variables to access the members of the innermost

as well as the outermost structures.

 13من 8الصفحة

 The use of nested structures is illustrated in the next program.

The following program is used to read and display the information of a

student using a nested structure.

The output:

 13من 9الصفحة

2. Arrays of Structures

 Now, we will discuss how an array of structures is declared.

 For this purpose, let us first analyze where we would need an array

of structures.

o In a class, we do not have just one student. But there may be

at least 30 students. So, the same definition of the structure

can be used for all the 30 students. This would be possible

when we make an array of structures. An array of structures

is declared in the same way as we declare an array of a built-

in data type.

o Another example where an array of structures is desirable is

in case of an organization. An organization has a number of

employees. So, defining a separate structure for every

employee is not a viable solution. So, here we can have a

common structure definition for all the employees.

 The general syntax for declaring an array of structures can be given

as:

Consider the given structure definition:

A student array can be declared by writing:

 13من 10الصفحة

Now, to assign values to the ith student of the class, we will write:

stud[i].id_num = 09;

stud[i].name = "Khalid Ali";

stud[i].course = "MBA";

stud[i].fees = 12000;

 In order to initialize the array of structure variables at the time of

declaration, we can write as follows:

struct student stud[3] = {{01, "Aman", "BCA", 45000},{02, "Aryan",

"BCA", 60000}, {03, "John", "BCA", 45000}};

3. Structures and Functions

 For structures to be fully useful, we must have a mechanism to pass

them to functions and return them.

 A function may access the members of a structure in three ways as

shown in the following figure:

3.1 Passing Individual Members

 To pass any individual member of a structure to a function, we must

use the direct selection operator to refer to the individual

members.

 The called program does not know if a variable is an ordinary

variable or a structured member.

 Look at the code given below which illustrates this concept.

 13من 11الصفحة

3.2 Passing the Entire Structure

 Just like any other variable, we can pass an entire structure as a

function argument.

 When a structure is passed as an argument, it is passed using the

call by value method, i.e., a copy of each member of the structure

is made.

 The general syntax for passing a structure to a function and

returning a structure can be given as

The above syntax can vary as per the requirement. For example, in

some situations, we may want a function to receive a structure but

return a void or the value of some other data type.

 The code given below passes a structure to a function using the call

by value method:

 13من 12الصفحة

Summary of some points that must be considered while passing a

structure to the called function.

 If the called function is returning a copy of the entire structure, then

it must be declared as struct followed by the structure name.

 The structure variable used as parameter in the function

declaration must be the same as that of the actual argument in the

called function (and that should be the name of the struct type).

 When a function returns a structure, then in the calling function the

returned structure must be assigned to a structure variable of the

same type.

3.3 Passing Structures through Pointers

 Passing large structures to functions using the call by value method

is very inefficient. Therefore, it is preferred to pass structures

through pointers.

 It is possible to create a pointer to almost any type in C, including

the user-defined types.

 It is extremely common to create pointers to structures.

 Like in other cases, a pointer to a structure is never itself a

structure, but merely a variable that holds the address of a

structure.

 The syntax to declare a pointer to a structure can be given as,

 13من 13الصفحة

or struct struct_name *ptr;

 For our student structure, we can declare a pointer variable by

writing:

struct student *ptr_stud, stud;

The next thing to do is to assign the address of stud to the pointer

using the address operator (&), as we would do in case of any other

pointer. So to assign the address, we will write

ptr_stud = &stud;

 To access the members of a structure, we can write:

(*ptr_stud).id_num;

Since parentheses have a higher precedence than *, writing this

statement would work well. But this statement is not easy to work with,

especially for a beginner. So, C introduces a new operator to do the same

task. This operator is known as ‘pointing-to’ operator (->). It can be used

as:

ptr_stud -> id_num = 120;

4. Self-Referential Structures

 Self-referential structures are those structures that contain a

reference to the data of its same type.

 That is, a self-referential structure, in addition to other data, contains

a pointer to a data that is of the same type as that of the structure. For

example, consider the structure node given below:

Here, the structure node will contain two types of data: an integer val

and a pointer next. You must be wondering why we need such a

structure. Actually, self-referential structure is the foundation of other

data structures.

