University of Tripoli — Faculty of Information Technology

Software Engineering Department

Software Architecture &

Design
ITSE411

y Marwa Solla

Software architecture and
design

for modern large—scale systems

Lecture 7/:

Object-oriented design using the UML

What We Learn In This Lecture

« Class Diagram
* Object Diagram
« State Machine Diagrams

* Activity Diagram.

UML Class Diagram

= A class diagram is a static structure diagram in the Unified Modeling Language
(UML) that represents the structure and behavior of a system or application
through its classes, attributes, methods, and relationships.

* |n class diagram, classes are depicted as boxes, and the static relationships
between them are depicted as lines connecting the boxes.

» The class diagram describes the classes of applications being modeled along with

their relationship. Custona Course

-Attributes:int Takes > -Attributes:int

+Method():void +Method():void

Fundamental concepts of Class diagram

** Class

Represents objects or Entities that share similar attributes, operations, relationships, and

behaviors.
can identify a class by a box of three compartment.

Each class typically has a name and Define Attributes (variables) and Behaviors

(methods).
} Name

}Attributes
} Methods

Fundamental concepts of Class diagram

Attributes:

ClassName

Properties or characteristics of class. They describe

the state of an object and are typically shown as

Employee

variables within the class. . — m
-FirstName:String
-LastName:String

+Calculatesalary():void

Methods: +GetAddress():void

Actions that a class can perform.

From Diagram to Code.

Class diagram represents the blueprint of the code.

Employee

FirstName

Employee LastName

-FirstName:String CalculateSalary

-LastName:String

+Calculatesalary():void
+GetAddress();Void GetAddress

Fundamental concepts of Class diagram

< Visibilities @

« Define, which classes in the diagram have access to certain variables and methods.
« This concept is used in object-oriented programming.

* There are four visibilities types:

+ Accessible anywhere and
within System
Accessible in a class that
defines it.
rotected Accessible in a class that
P defines it OR Subclass
S Accessible within same
P 9 package

Fundamental concepts of Class diagram

% Visibilities @
Table 3. Visibility Options on UML Class Diagrams

Visib..ly Symbol Accessible to

Public - All objects within your system

Protected # Instances of the implementing class and
its subclasses

Private - Instances of the implementing class

Package ~ Instances of classes within the same
package

TIP: On detailed design models, you should always indicate the visibility of attributes and operations

Fundamental concepts of Class diagram

P rofe SSOr Attributes:

| I[/] [: type][{property}*]

) Methods:
: String {read-only} |] [(parameter type*)] [; return type][{property}*]
: double = 55000.00

: Date Visibilities:
. Int public (+), private (), protected (), package ()

: String Class attributes/operations:
i Those are in the class diagram.
In programming this corresponds to the keyword

Homework) : Int

Fundamental concepts of Class diagram

+* Relations

Represents objects or Entities that share similar attributes, operations, relationships,

 There are 4 types of relations:

1) Associations
2) Aggregation
3) Composition

4) Inheritance

Relationships between Classes

’ ClassA
1 Associations: o I

How objects of one class interact with objects of another class |

Customer Course

-Attributes:int Takes > -Attributes:int

+Method():void +Method():void

Multiplicity

“ Multiplicity

= For each class involved in a relationship, there will always be a multiplicity.

Table . UML Multiplicity Indicators

Indicator Meaning

0.1 Zero or one

] One only

0. Zero or more

].* One ormore

n Only n(wheren> 1)

* Many
Zeroton(wheren>1)
Oneto n(wheren>1)
Where nand mboth > |
nor more, where n > |

3 3 —~0
'-'3::

Multiplicity

“ Multiplicity
= Many to Many(N:N)

Student Course
—attributes:int % * —attributes:int
+Method():void +Method():void

= Many to One(N:1)

—attributes:int 5 1 —attributes:int

+Method():void +Method():void

Multiplicity

“ Multiplicity
= One to Many(1:N)

Department Employee

. . 3
—attributes:int 1 1.. —attributes:int
+Method():void +Method():void

= One to One(1:1)

—attributes:int 1 1 —attributes:int

+Method():void +Method():void

Relationships between Classes

d Aggregation: | ClassWhole ‘
Represents a strong whole—part relationship between two classes. ?
Partclass can exist Independently of the Whole class. l
WholeClass l ClassPart1 | I ClassPart2 I
—Part:Partclass
+Method():void
Wallet Money

—attributes <>— —attributes

+Method():void +Method():void

Relationships between Classes

I ClassWhole l

d Composition: r

| ClassPart1 l ‘ ClassPart2 |

Represents a strong whole—part relationship between two classes.

Part cannot exist Independently of the Whole

Folder File

—attributes ‘— —attributes

+Method():void +Method():void

O Inheritance: [

Inheritance Relationship

I SuperClass

JAN

| |

Inheritance is also called generalization. [“swbcassat | [subciassaz |
Hierarchical relationship between classes, where a subclass inherits attributes and
methods from its parent class

Inheritance is represented by a solid line and the inheritance arrowhead.

~Avtributesdnt

id
+Method(void Inheritance
.
Date

I l . String
: String

Child/SubCiass Chikifsubclass

. String
A
Profes

+Method ():void +Method():void

Inheritance Relationship

= |nherit from the same superclass: Multiple classes can inherit from the same superclass.

Examples:

Animal

—Name:string

. String

- it +MakeSound():boolean

1

Dog Cat

- String —Species:string —FurType:string
: Date

: String +Bark():b00|ean +MeOW():VOid

Inheritance Relationship

= Multiple inheritance: In UML one subclass can inherit from multiple superclasses.

HOWEVER, this is not possible in all programming languages.

Example 1:

0.*

Shopping Cart

-cartid: int
-productid: int
quanuty: int
-dateAdded: int

+addCartitem()
+updateQuantity()
+viewCartDetails()
+checkOut()

Customer

-customerName: string
-address: string

-email: string
-creditCardinfo: string
-shippinginfo: string
-accountBalance: float

+register()
+login()
+updateProfile()

1

Orders

-orderld: int
-dateCreated: string
-dateshipped: string
-customerName: string
-customerld: string
-status: string
-shippingld: string

User

-userid: string
-password: string
-loginStatus: string
-registerDate: date

+verifyLogin(): bool

Administrator

-adminName: string
email: string

Shipping Info

-shippingld: int
-shippingType: string
-shippingCost: int
-shippingRegionid: int

+updateCatalog(): bool

+updateShippinginfo()

has a

Order Details

+placeOrder()

-orderid: int
-productid: int
-productName: string
-quality: int
-unitCost: float
-subtotal: float

+calcPrice

Example 2:

Customer

id : int
name : String

accounts : List<BankAccount>

createAccount()
subscribe(Event) : boolean

BankAccount

U...

0...n

n

BankEvent

accountId : int

balance : double

name : String

subAcnts : List<SubAcnt>

withdraw(double)
deposit(double)

- title : String
- date : Date

+ party() : void

MilesAccount

rewards : String
points : int

addPoints(int)

claim(String) : String

SavingsAccount

interest : double

withdraw(double)
deposit(double)
checkBal() : double

SubAcnt

- id : int

+ pip0ff()

UML object Diagram

Object diagram are closely related to class diagrams

Snapshot of a class diagram at a particular moment in time. by representing an

instance of that class diagram.

Object diagram is also known as instance diagram.

Explore “real-world” examples of objects and the relation— ships

between them.

John Smith:Employee

-FirstName:John

UML object Diagram

Object Diagram Class Diagram

Static Structure with Data Static Structure
John Smith:Employee Employee
-FirstName:John -FirstName:string

+Calculatesalary():void

Represent active objects and
their relationships at a
given moment

UML object Diagram

Object Diagram Class Diagram

Concrete Instances of
classes at a particular
Moment

Abstract Model consists of
classes & their relationship

Example 1:

UML object Diagram

P1: Product

ductid = 11123344
juctName = "Yellow Modern Shirt
cnption =~ A soft yellow shirt made with cotton *

P2: Product

+productid = 11223344
+productName = "Blue Jeans’
+description = "sample description’

TN

Customer: user

+wishList=[p1,p3,p5]

C1: User

+loginid = “yogesh
+password = "**
+email = "abc@gmail.com”

shippingAddress: Address

+HouseNo = 123
+Road = "3rd main
.>| +City = "banglore’

ClAccount: UserAccount

+address: shippingAddress
+phone: 2345678966

1
a
+id =234 =
I

+orders: order(])

ment: Payment cred: CreditCard
+CreditCard={cardNo0:123456789 type:visa,expiry:10/24)} +ProcessPayment()

UML object Diagram

Example 1:

P1: Product
- -productid = 11123344
P2: Product -productName = “Yellow Modern Shirt”
+productid = 11223344 +descniption = " A soft yellow shirt made with cotton *
+productName = "Blue Jeans’
+description = "sample description”
Customer: user shoppingCart: ShoppingCart
+wishList=[p1,p3,p5] +products = [pL.p2]
C1: User
+loginid = "yogesh
+password = "***
+email = "abc@gmail.com”
order: Order shippingAddress: Address
+orderld = 123 +HouseNo = 123
+order_date = "4/21/2023 +Road = "3rd main
+shipping_address = shippingAddress +City = "banglore
+payment = CreditCard
ClAccount: UserAccount +orderStatus = Ordered L >
+products=[p1,p2]
+id = 234 L —
+address: shippingAddress
+phone: 2345678966
+orders: order(]
payment: Payment cred: CreditCard

+CreditCard={cardNo0:123456789 type:visa,expiry:10/24} +ProcessPayment()

UML object Diagram

Example 2:

milesAcc : MilesAccount

accountId = 124
balance = 4000.0 customer : Customer
name = “Geekific”
points = 100 _
event : BankEvent id = 2345

name = “Geekific”

title = “OPENING”
date = 1/1/2021

subl : SubAcnt

bankAcc : SavingsAccount
id = 1

accountld = 123
balance = 1000.0
name = “Geekific”
sub2 : SubAcnt interest = 0.04

id = 2

UML object Diagram

object Diagram Class Diagram

Customer
milesAcc : MilesAccount BankAccount

id : int
accountId = 124

X name : String . 3
pstance =909 CUSKENBE. - Dustomsr accounts : List<BankAccount> accountld : 1int
name = “Geekific

points = 100 balance : double
event : BankEvent id = 2345 + createAccount() name : String

name = “Geekific” subscribe(Event) : boolea .
cribafEvant) % iboolesn subAcnts : List<SubAcnt>

title = “OPENING”
date = 1/1/2021 0

..N

withdraw(double)
deposit(double)

subl : SubAcnt 0..n

bankAcc : SavingsAccount
id = 1 BankEvent

accountId = 123 MilesAccount SubAcnt

ke Fles pr - title : String .
sub2 : SubAcnt interest = 0.04 - date : Dato rewards : String SavingsAccount - id : int

0 points : int
i + party() : void + rip0ff()
d=2 . .

i clain(String) : String interest : double
addPoints(int)

withdraw(double)
deposit(double)
checkBal() : double

UML State Machine Diagrams

State machine diagrams depict the dynamic behavior of an entity based on its
response to events, showing how the entity reacts to various events based on its
current state.

Create a UML state machine diagram to explore the complex behavior of a class,
actor, subsystem, or component.

State Machine Diagrams, also known as state diagrams or statecharts.

They are particularly useful for modeling the dynamic behavior of objects or systems

that have a finite number of states.

UML State Machine Diagrams

» State machine diagrams can also show how an entity reacts to various events,

moving from one state to another.

= Each class has objects that may have status conditions or "states”.

= QObject behavior consists of the various states and the movement between
these states.

= State Machine Diagram is a diagram which shows the life of an object

n states and transitions

UML State Machine Diagrams

key components and concepts of UML State Machine Diagrams:

@)

State: a condition during an object's life when it satisfies some criterion,
performs an action, or waits for an event.

Transitions: -the movement of an object from one state to another

Origin state: the original state of an object before it begins a transition
Destination state: the state to which an object moves after completing a
transition

Actions: some activity that must be completed as part of a transition.
guard—condition: a true/false test to see whether a transition can fire

Initial and Final States

Pseudostate: the starting point in a state machine diagram. Noted by a

black circle.

State

State

activities/methods

Transition

® Initial state

(@) Final state

UML State Machine Diagrams

= key components and concepts of UML State Machine Diagrams: T
o Concurrent states: when an object is in one or more states at the same
time
o Concurrent paths: when multiple paths are being followed concurrently, i.e. |) H

when one or more states in one path are parallel to states in another path

Initial State

®
Event
Notes.' /(:om;x)mlu state A \
= The event causes the state transition ommre A Event fcondtion)
Action
. . . g entry / Action e
= The optional action is performed as a result of the transition. &> T acon Substate A2
~—
Optionally, a state may have any of the following:
v' An entry action, performed when the state is entered ~ 7
Event / Action

v" An exit action, performed on exit from the state @

UML State Machine Diagrams

Example:

A State indicates a state of
being of the object. Name it
as a condition or a verb
phrase.

Transition-name can have a trigger,
a guard, and an action-expression.

onButtonPushed [safety cover closed] / run start-up
Off On

! o offButtonPushed k
3

The beginningjpseudostate PlTransitiorl moves the object from the
art of the state

denotes the st origin state to the destination state.
machine behavior for this object.

UML State Machine Diagrams

Example:

itemArrived

{ On back order

Y
w shipitem
’—»‘ Open }SaleComp|ete=£ Ready to ship J { shipping]—’@

—

Example:

UML State Machine Diagrams

mark unre ad

new message armved

)

open emad

Email Example

T
_(Read] reply email >[Replied j

®-

UML State Machine Diagrams

Example:
Make An Appointment
New
RN
// | \
: P | . Change Appointment
Cancel Appountm/elr)t \\ [Appointment Date — Current date >1]
Py | \\ N
- | N\
N\

Canceled
» Changed

= |

UML Activity Diagram

= activity diagram is used to describe A use case model. However, to depict a use case, a
subset of the activity diagram capabilities is sufficient. In particular, it is not necessary to
model concurrent activities for use cases.

= An activity diagram can be used to represent the sequential steps of a use case, including
the main sequence and all the alternative sequences.

» Activity diagrams is something like the famous flow charts but it's much more powerful

than flow charts. Flow charts are not part of UML diagrams.

UML Activity Diagram

0 key components and concepts of UML activity diagrams:

Initial and Final Nodes: Initial nodes represent the start of the activity diagram, while final
nodes represent the end.

Activities: Activities represent tasks or actions that occur within the system.

Decisions: Decisions, also known as decision nodes or decision points, represent points in
the process where the flow of control can diverge based on conditions.

Merge Nodes: Merge nodes are used to synchronize multiple incoming transitions into a
single outgoing transition.

Forks and Joins: Forks and joins are used to create parallel paths in the process flow. A
fork splits the flow of control into multiple concurrent paths, while a join merges multiple

concurrent paths back into a single path.

UML Activity Diagram

Swimlane
heading

Manager I |

Starting activity l () (
(Pseudo) T
(Review 1 {
f

w— inancials
Transition arrow 1 ‘
Activity CPrepare) Decision
report activity
Ending activity Ci)

(Pseudo)

Synchronization
bar (Split)

Synchronization
bar (Join)

Another way
to show decision

An example of an activity diagram for write

prescription use case of the Clinic system

Doctor Fatient

examine
patient

write
presecnption
details

pnt ’ recemve
presecnption prescrnption

&

UML Activity Diagram

ATM Log in

Enter card |

O

\b"‘"d card] [not vaiid card)
=
){ Ask for pin ‘ 4
4
Eject card J
\
Enter pin |

[not valid pin) —

vahdate pan

&

[valkd pin)

{

Menu |

An example of an activity diagram for the Make Order

Request use case of the Online Shopping System

!

Receive
Order Request

)

[account does not exist]

{

Create
New Account

!

)

N

[account exists]

Get

E\ccount Informanonj

)

-

Display
Invalid Credit Car

)

Authorize
Credit Card
[invalid]
[valid]
Create

New Delivery Order

Display and Confirm
the Order

&

UML Activity Diagram

Swimlane: °
Swimlanes group related activates into one column. |
Place order
oo:m“:.".:bn Take arder 'm' Pack in box
Order processing ——)} Ship ovder
Receve

Pay bl ” Cbuu‘aA

The End

