
Software Architecture &
Design

ITSE411

By Marwa Solla

University of Tripoli - Faculty of Information Technology

Software Engineering Department

Software architecture and
design

for modern large-scale systems

Lecture 7:

Object-oriented design using the UML

What We Learn In This Lecture

• Class Diagram

• Object Diagram

• State Machine Diagrams

• Activity Diagram.

§ A class diagram is a static structure diagram in the Unified Modeling Language

(UML) that represents the structure and behavior of a system or application

through its classes, attributes, methods, and relationships.

§ In class diagram, classes are depicted as boxes, and the static relationships

between them are depicted as lines connecting the boxes.

§ The class diagram describes the classes of applications being modeled along with

their relationship.

UML Class Diagram

Fundamental concepts of Class diagram

v Class
• Represents objects or Entities that share similar attributes, operations, relationships, and

behaviors.

• can identify a class by a box of three compartment.

• Each class typically has a name and Define Attributes (variables) and Behaviors

(methods).
Name

Attributes

Methods

Fundamental concepts of Class diagram

Attributes:

Properties or characteristics of class. They describe

the state of an object and are typically shown as

variables within the class.

Methods:

Actions that a class can perform.

Class diagram represents the blueprint of the code.

From Diagram to Code.

Fundamental concepts of Class diagram

v Visibilities

• Define, which classes in the diagram have access to certain variables and methods.

• This concept is used in object-oriented programming.

• There are four visibilities types:

Fundamental concepts of Class diagram

v Visibilities

TIP: On detailed design models, you should always indicate the visibility of attributes and operations

Fundamental concepts of Class diagram

I

Fundamental concepts of Class diagram

v Relations
• Represents objects or Entities that share similar attributes, operations, relationships,

• There are 4 types of relations:

1) Associations

2) Aggregation

3) Composition

4) Inheritance

Relationships between Classes

q Associations:

How objects of one class interact with objects of another class

v Multiplicity

§ For each class involved in a relationship, there will always be a multiplicity.

Multiplicity

v Multiplicity

§ Many to Many(N:N)

§ Many to One(N:1)

Student

-attributes:int

+Method():void

Course

-attributes:int

+Method():void

* *

CreditCard

-attributes:int

+Method():void

Person

-attributes:int

+Method():void

1..* 1

Multiplicity

v Multiplicity

§ One to Many(1:N)

§ One to One(1:1)

Department

-attributes:int

+Method():void

Employee

-attributes:int

+Method():void

1 1..*

HumanBody

-attributes:int

+Method():void

Nose

-attributes:int

+Method():void

1 1

Multiplicity

Relationships between Classes

q Aggregation:

Represents a strong whole-part relationship between two classes.

Partclass can exist Independently of the Whole class.

Money

-attributes

+Method():void

Wallet

-attributes

+Method():void

WholeClass

-Part:Partclass

+Method():void

Relationships between Classes

q Composition:

Represents a strong whole-part relationship between two classes.

Part cannot exist Independently of the Whole

File

-attributes

+Method():void

Folder

-attributes

+Method():void

Inheritance Relationship

q Inheritance:

§ Inheritance is also called generalization.

§ Hierarchical relationship between classes, where a subclass inherits attributes and

methods from its parent class

§ Inheritance is represented by a solid line and the inheritance arrowhead.

Animal

-Name:string

+MakeSound():boolean

Cat

-FurType:string

+Meow():void

Dog

-Species:string

+Bark():boolean

§ Inherit from the same superclass: Multiple classes can inherit from the same superclass.

Examples:

Inheritance Relationship

§ Multiple inheritance: In UML one subclass can inherit from multiple superclasses.

HOWEVER, this is not possible in all programming languages.

Inheritance Relationship

Example 1:

Example 2:

UML object Diagram

§ Object diagram are closely related to class diagrams

§ Snapshot of a class diagram at a particular moment in time. by representing an

instance of that class diagram.

§ Object diagram is also known as instance diagram.

§ Explore “real-world” examples of objects and the relation- ships

between them.

UML object Diagram

UML object Diagram

UML object Diagram

Example 1:

UML object Diagram

Example 1:

UML object Diagram

Example 2:

UML object Diagram

object Diagram Class Diagram

UML State Machine Diagrams

§ State machine diagrams depict the dynamic behavior of an entity based on its

response to events, showing how the entity reacts to various events based on its

current state.

§ Create a UML state machine diagram to explore the complex behavior of a class,

actor, subsystem, or component.

§ State Machine Diagrams, also known as state diagrams or statecharts.

§ They are particularly useful for modeling the dynamic behavior of objects or systems

that have a finite number of states.

UML State Machine Diagrams

§ State machine diagrams can also show how an entity reacts to various events,

moving from one state to another.

§ Each class has objects that may have status conditions or "states”.

§ Object behavior consists of the various states and the movement between

these states.

§ State Machine Diagram is a diagram which shows the life of an object

in states and transitions

UML State Machine Diagrams

§ key components and concepts of UML State Machine Diagrams:

o State: a condition during an object's life when it satisfies some criterion,

performs an action, or waits for an event.

o Transitions: the movement of an object from one state to another

o Origin state: the original state of an object before it begins a transition

o Destination state: the state to which an object moves after completing a

transition

o Actions: some activity that must be completed as part of a transition.

o guard-condition: a true/false test to see whether a transition can fire

o Initial and Final States

o Pseudostate: the starting point in a state machine diagram. Noted by a

black circle.

UML State Machine Diagrams

§ key components and concepts of UML State Machine Diagrams:

o Concurrent states: when an object is in one or more states at the same

time

o Concurrent paths: when multiple paths are being followed concurrently, i.e.

when one or more states in one path are parallel to states in another path

Notes:

§ The event causes the state transition

§ The optional action is performed as a result of the transition.

Optionally, a state may have any of the following:

ü An entry action, performed when the state is entered

ü An exit action, performed on exit from the state

UML State Machine Diagrams

Example:

UML State Machine Diagrams

Example:

On back order

Open Ready to ship shipping

itemArrived

saleComplete shipitem

UML State Machine Diagrams

Example:

UML State Machine Diagrams

Example:

§ activity diagram is used to describe A use case model. However, to depict a use case, a

subset of the activity diagram capabilities is sufficient. In particular, it is not necessary to

model concurrent activities for use cases.

§ An activity diagram can be used to represent the sequential steps of a use case, including

the main sequence and all the alternative sequences.

§ Activity diagrams is something like the famous flow charts but it's much more powerful

than flow charts. Flow charts are not part of UML diagrams.

UML Activity Diagram

q key components and concepts of UML activity diagrams:

§ Initial and Final Nodes: Initial nodes represent the start of the activity diagram, while final

nodes represent the end.

§ Activities: Activities represent tasks or actions that occur within the system.

§ Decisions: Decisions, also known as decision nodes or decision points, represent points in

the process where the flow of control can diverge based on conditions.

§ Merge Nodes: Merge nodes are used to synchronize multiple incoming transitions into a

single outgoing transition.

§ Forks and Joins: Forks and joins are used to create parallel paths in the process flow. A

fork splits the flow of control into multiple concurrent paths, while a join merges multiple

concurrent paths back into a single path.

UML Activity Diagram

UML Activity Diagram

An example of an activity diagram for write
prescription use case of the Clinic system

UML Activity Diagram

An example of an activity diagram for the Make Order
Request use case of the Online Shopping System

UML Activity Diagram

Swimlane:
Swimlanes group related activates into one column.

Order processing

The End

