
Software Architecture &
Design

ITSE411

By Marwa Solla

University of Tripoli - Faculty of Information Technology

Software Engineering Department

Software architecture and
design

for modern large-scale systems

Lecture 6:

Object-oriented design using the UML

What We Learn In This Lecture

• Introduction to Detailed design.

• Object-oriented design using the UML

• use case diagram

Detailed design: the process of refining and expanding the preliminary design of a

system or component to the extent that the design is sufficiently complete to be

implemented .[ISO/IEC 24765]

Software Design

• Whereas the software architecture places a major emphasis on quality

(nonfunctional requirements), the detailed design activity places a major focus on

addressing functional requirements of the system.

• In object-oriented systems, the detailed design activity is where components are

refined into one or more classes, interfaces are realized, relationships between

classes are specified, class functions and variable names are created, design

patterns are identified and applied.

Detailed Design

• Two major tasks of the detailed design activity are interface design and

component design.

• Interface design refers to the design activity that deals with specification of

interfaces between components in the design (Sommerville 2010).

• Component design refers to modeling the internal structure and behavior of

components which includes the internal structure of both logical and physical

components-identified during the software architecture phase.

Detailed Design

• Components are not limited to object-oriented systems; therefore, component

designs can be realized in many ways. In object-oriented systems, the internal

structure of components is typically modeled using UML through one or more

diagrams, including class and sequence diagrams (Carlos E. Otero 2012).

• When modeling the internal structure of components, several design principles,

heuristics, and patterns are used to create and evaluate component designs.

Detailed Design

§ Unified Modeling Language (UML) is a standardized visual language used in

software engineering to represent, design, and communicate the structure and

behavior of software systems. It provides a common framework for software

developers, architects, and stakeholders to create and understand visual models of

software systems

§ UML supports both structural modeling, which focuses on the static structure of the

system (e.g., classes, objects, relationships), and behavioral modeling, which

captures the dynamic aspects of the system

Unified Modeling Language (UML)

§ Unified Modeling Language (UML) diagrams are :

Unified Modeling Language (UML)

STRUCTURAL

• CLASS DIAGRAM

• OBJECT DIAGRAM

• COMPONENT DIAGRAM

• DEPLOYMENT DIAGRAM

BEHAVIORAL

• USE CASE DIAGRAM

• SEQUENCE DIAGRAM

• COLLABORATION DIAGRAM

• STATE CHART DIAGRAM

• ACTIVITY DIAGRAM

§ Unified Modeling Language (UML) diagrams are :

Unified Modeling Language (UML)

General Diagramming Guidelines

The guidelines presented are applicable to all types of diagrams, UML or otherwise.

v Readability Guidelines

1. Avoid Crossing Lines

When two lines cross on a diagram, such as two associations on a UML class diagram, the

potential for misreading a diagram exists.

2. Depict Crossing Lines as a Jump

You can’t always avoid crossing lines; for example,

you cannot fully connect five symbols. When you

need to have two lines cross, one of them should

“hop” over the other as in Figure 1:

Figure 1

3. Avoid Diagonal or Curved Lines:

Straight lines, drawn either vertically or horizontally, are easier for your eyes to follow than

diagonal or curved lines

4. Apply Consistently Sized Symbols

Figure 2

5. Align Labels Horizontally

In Figure 2 the two labels are easier to read in the

second version of the diagram. Notice how Label

2 is horizontal even though the line it is associated

with is vertical.

General Diagramming Guidelines

6. Organize Diagrams Left to Right, Top to Bottom

7. Avoid Many Close Lines:

Several lines close together are hard to follow.

q Notes:
•Symbols represent diagram elements such as class boxes, object boxes, use cases, and actors.
•Lines represent diagram elements such as associations, dependencies, and transitions between states.
•Labels represent diagram elements such as class names, as- sociation roles, and constraints.

vSimplicity Guidelines

8. Reorganize Large Diagrams into Several Smaller Ones

A good rule of thumb is that a diagram shouldn’t have more than nine symbols on it, based on

the 7 ± 2 rule (Miller 1957),

General Diagramming Guidelines

9. Prefer Single-Page Diagrams

a diagram should be printable on a single sheet of paper to help reduce its scope as well

as to prevent wasted time cutting and taping several pages together.

10. Focus on Content First, Appearance Second

11. Apply Consistent, Readable Fonts

Consistent, easy-to-read fonts improve the readability of your diagrams. Good ideas

include fonts in the Courier, Arial, and Times families. Bad ideas include small fonts (less

than 10 point), large fonts (greater than 18 point), and italics.

General Diagramming Guidelines

vNaming Guidelines

12. Apply Common Domain Terminology in Names

Apply consistent and recognizable domain terminology, such as customer and order, whenever

possible on your diagrams.

13. Name Common Elements Consistently Across Diagrams

A single modeling element, such as an actor or a class, will appear on several of your

diagrams. For example, the same class will appear on several UML class diagrams, several

UML sequence diagrams, several UML communication diagrams, and several UML activity

diagrams. This class should have the same name on each diagram; otherwise your readers will

become confused.

General Diagramming Guidelines

Guidelines for UML Notes

A UML note is a modeling construct for adding textual information—such as a comment,

constraint definition, or method body—to UML diagrams. As you can see in Figure below,

notes are depicted as rectangles with the top right corners folded over.

14. Left-Justify Text in Notes
It is common practice to left-justify text in UML notes, as you can see in Figure above.

15. Prefer Notes over OCL to Indicate Constraints:

In UML, constraints are modeled either by a UML note using free-form text or with Object

Constraint Language (OCL).

Guidelines for UML Notes

UML Use-Case Diagrams

A UML use-case diagram shows the relationships among actors and use cases within

a system. They are often used to:

§ provide an overview of all or part of the usage requirements for a system or

organization in the form of an essential model.

§ model the analysis of usage requirements in the form of a system use-case model.

§ The use case model describes the functional requirements of the system in terms

of the actors and use cases

COMPONENTS OF USE CASE DIAGRAMS

Actors
Who Interacts

With The System

Relationship
Relation Between
Actors and use

cases

Use Case
Functionality Or

Services Provided By
The System

System

System Boundary
it indicates the
scope of the

system

User

Use Case

Use Case

COMPONENTS OF USE CASE DIAGRAMS

Use Case

Use Case

SecondaryActor

PrimaryActor

System Boundary

System

Use Case

Use Case

<< include >>

IDENTIFYING USE CASES

§ A use case defines a sequence of interactions between one or more actors and the

system.

§ A use case always starts with input from an actor. A use case typically consists of a

sequence of interactions between the actor and the system. Each interaction consists

of an input from the actor followed by a response from the system.

§ In this way, the functional requirements of the system are described in terms of the use

cases

IDENTIFYING USE CASES

§ Let us consider the banking example, The customer can initiate three use cases: Withdraw

Funds, Query Account, and Transfer Funds

Banking System actor and use cases

Use-Case Guidelines

§ Begin Use-Case Names with a Strong Verb

§ Name Use Cases Using Domain Terminology

§ Imply Timing Considerations by Stacking Use Cases

Withdraw Funds

Process Withdrawal Transaction

IDENTIFYING ACTORS

§ An actor characterizes an external user (i.e., outside the system) that interacts with the

system. in other words, actors are outside the system and not part of it.

§ An actor is a person, organization, local process (e.g., system clock), or external system

that plays a role in one or more interactions with your system. It is very often a human

user. For this reason, in UML, an actor is depicted using a stick figure.

§ It is possible for an actor to be an external system that interfaces to the system, in some

applications, an actor can also be an external I/O device or a timer(in real-time embedded

systems).

IDENTIFYING ACTORS

q Primary and Secondary Actors

A primary actor initiates a use case. Thus, the use case starts with an input from the primary

actor to which the system has to respond. Other actors, referred to as secondary actors, can

participate in the use case.

Example of primary and secondary actors, as well as external system actor

Actor Guidelines

§ Place Your Primary Actor(s) in the Top Left Corner of the Diagram.

§ Draw Actors on the Outside Edges of a Use-Case Diagram

§ Name Actors with Singular, Domain-Relevant Nouns

§ Associate Each Actor with One or More Use Cases

§ Use <<system>> to Indicate System Actors

Online shopping.

IDENTIFYING USE CASE RELATIONSHIP

There are several types of relationships that may appear on a use-case diagram:

§ Association Relationship

§ Include Relationship

§ Extend Relationship

§ Generalization Relationship

IDENTIFYING USE CASE RELATIONSHIP

v Association Relationship

The Association Relationship represents a

communication or interaction between an actor

and a use case.

v Include Relationship

The Include Relationship indicates that a use

case includes the functionality of another use

case.

IDENTIFYING USE CASE RELATIONSHIP

v Extend Relationship

The Extend Relationship illustrates that a use case can be

extended by another use case under specific conditions.

v Generalization Relationship

The Generalization Relationship establishes an “is-a”

connection between two use cases, or two actors.

Ø 2 use case indicating that one use case is a

specialized version of another.

Ø 2 actors represents a hierarchical relationship where

one actor is a more specialized version of another

actor.

Delete
post

Edit
post

Create
post

Manage
post

Extension Points

§ Extension points are used to specify the precise locations in the base use case at which

extensions can be added. An extension use case may extend the base use case only at these

extension points.

§ Each extension point is given a name.

Relationship Guidelines

§ Avoid Arrowheads on Actor–Use-Case Relationships

§ Do Not Apply <<uses>>, <<includes>>, or <<extends>>

§ Place an Included Use Case to the Right of the Invoking Use Case

§ Place an Extending Use Case Below the Parent Use Case

§ Place an Inheriting Use Case Below the Base Use Case

§ Avoid Modeling Extension Points

§ Model Extension Conditions Only When They Aren’t Clear

DOCUMENTING USE CASES IN THE USE CASE MODEL

Each use case in the use case model is documented in a use case description, as follows:

Use case name: Each use case is given a name.

Summary A brief description of the use case, typically one or two sentences.

Dependency This optional section describes whether the use case depends on other use cases –
that is, whether it includes or extends another use case.

Actors This section names the actors in the use case. There is always a primary actor that
initiates the use case.

Preconditions One or more conditions that must be true at the start of use case, from the
perspective of this use case

Description of main
sequence

description of the main sequence of the use case, which is the most usual sequence
of interactions between the actor and the system.

Description of
alternative sequences

Narrative description of alternative branches off the main sequence.

Postcondition Condition that is always true at the end of the use case

DOCUMENTING USE CASES IN THE USE CASE MODEL

Example Of Use Case Description:

Use case name: Make Order Request

Summary
(Description)

Customer enters an order request to purchase items from the online
shopping system. The customer’s credit card is checked for sufficient
credit to pay for the requested catalog items.

Actors Customer

Preconditions The customer has selected one or more catalog items.

Description of
main sequence

1. Customer provides order request and customer account Id to pay
for purchase.

2. System retrieves customer account information, including the
customer’s credit card details.

3. System checks the customer’s credit card for the purchase amount
and, if approved, creates a credit card purchase authorization
number.

4. System creates a delivery order containing order details, customer
Id, and credit card authorization number.

5. System confirms approval of purchase and displays order
information to customer.

Online Shopping System

DOCUMENTING USE CASES IN THE USE CASE MODEL

Example Of Use Case Description:

Description of

Alternative

sequences:

Step 2: If customer does not have account, the system creates an

account.

Step 3: If the customer’s credit card request is denied, the system

prompts the customer to enter a different credit card number. The

customer can either enter a different credit card number or cancel the

order.

Postcondition 1. System has created a delivery order for the customer.

Online Shopping System

USE CASE PACKAGES

For large systems, having to deal with a large number of use cases in the use case model

often gets unwieldy. A good way to handle this scale-up issue is to introduce a use case

package that groups together related use case

Example of use case package

package

The End

