
Software Architecture &
Design

ITSE411

By Marwa Solla

University of Tripoli - Faculty of Information Technology

Software Engineering Department

Software architecture and
design

for modern large-scale systems

Lecture 5:
Architectural styles(patterns)

What We Learn In This Lecture

• Architecture styles

ü Monolithic architectures

ü Distributed architectures

3-Tier architecture style

§ Three Tier architecture style

§ Three Tier architecture is one of the most common architectural styles.

§ Three-tier architecture is a well-established software application architecture

that organizes applications into three logical and physical computing tiers: the

presentation tier, or user interface; the application tier, where data is

processed; and the data tier, where the data associated with the application is

stored and managed.

3-Tier architecture style

§ The main benefit of three-tier architecture is that because each tier runs on its own

infrastructure, each tier can be developed simultaneously by a separate development team,

and can be updated or scaled as needed without impacting the other tiers.

Presentation Tier

Business Tier

Data Tier

Top level

Client Tier

Front-end

Middle level

Application Tier

Business Logic

Data Access Tier

Persistence Tier

3-Tier architecture style

1. Presentation tier

o The presentation tier is the user interface and communication layer of the

application, where the end user interacts with the application. Its main purpose

is to display information to and collect information from the user.

o This top-level tier can run on a web browser, as desktop application, or a

graphical user interface (GUI), for example. Web presentation tiers are usually

developed using HTML, CSS and JavaScript. Desktop applications can be

written in a variety of languages depending on the platform.

3-Tier architecture style

2. Business tier

§ The business tier, also known as the logic tier or middle tier, is the heart of the

application. In this tier, information collected in the presentation tier is

processed - sometimes against other information in the data tier - using

business logic, a specific set of business rules. The application tier can also

add, delete or modify data in the data tier.

§ The business tier is typically developed using Python, Java, Perl, PHP or Ruby,

and communicates with the data tier using API calls.

https://www.ibm.com/topics/api

3-Tier architecture style

3. Data Tier

§ The data tier, sometimes called database tier, data access tier or back-end, is

where the information processed by the application is stored and managed.

This can be a relational database management system such as PostgreSQL,

MySQL, MariaDB, Oracle, DB2, Informix or Microsoft SQL Server, or in

a NoSQL Database server such as Cassandra, CouchDB or MongoDB.

§ In a three-tier application, all communication goes through the application tier.

The presentation tier and the data tier cannot communicate directly with one

another.

https://www.ibm.com/topics/postgresql
https://www.ibm.com/topics/nosql-databases
https://www.ibm.com/topics/couchdb
https://www.ibm.com/topics/mongodb

§ Faster development: Because each tier can be developed simultaneously by

different teams, an organization can bring the application to market faster,

and programmers can use the latest and best languages and tools for each

tier.

§ Scalability: Each tier can be scaled independently to handle increased load or

resource requirements.

Advantages of Three-Tier Architecture

Advantages of Three-Tier Architecture

•Flexibility: Changes in one tier do not necessarily affect the others, providing

flexibility in development and maintenance.

•Security: The separation of layers enhances security by restricting direct access

to the data tier and enforcing access controls through the application tier.

Layered architecture style

§ Layered architecture style

§ Layered architecture known as the n-tiered architecture style, is one of the

most common architectural styles.

§ Organizes the system into layers with related functionality associated with

each layer. A layer provides services to the layer above it so the lowest-level

layers represent core services that are likely to be used throughout the

system.

Layered Architecture

§ The idea behind Layered Architecture is that modules or components with similar

functionalities are organized into horizontal layers.

§ Used when

ü building new facilities on top of existing systems.

ü when the development is spread across several teams with each team

responsibility for a layer of functionality.

ü when there is a requirement for multi-level security.

ü Only for big applications.

A generic layered architecture

Layer 1

Layer 2

Layer 3

Layer 4

A generic layered architecture

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Example: The architecture of the LIBSYS system

Advantages

§ Allows replacement of entire layers so long as the interface is maintained.

§ Redundant facilities (e.g., authentication) can be provided in each layer to

increase the dependability of the system.

Disadvantages

§ In practice, providing a clean separation between layers is often difficult and a

high-level layer may have to interact directly with lower-level layers rather than

through the layer immediately below it.

§ Performance can be a problem because of multiple levels of interpretation of a

service request as it is processed at each layer.

Layered Architecture

• Three Tier Architecture

• Layered Architecture

Architectures styles

Monolithic Distributed

• Microservices Architecture

• Event driven Architecture

Architectures styles

§ Monolithic architecture, in contrast to microservices architecture,

§ It is an approach where an entire software application is built as a single,

tightly integrated unit.

§ Tight Integration: all the components and modules of the application are

interconnected.

§ Single Codebase: The entire application, including its functionalities and

features, is developed within a single codebase.

Monolithic architecture

Microservices architecture VS Monolithic architecture (3 Tier architecture)

All the business logic was concentrated in one single service in the application tier

Monolithic architecture

Monolithic Architecture - Advantages
Monolithic architecture is perfect for:
• Small teams
• Small and non complex codebase

Monolithic Architecture - Disadvantages
As the size and complexity of our codebase grow, it becomes difficult to:
• Troubleshoot
• Add new features
• Build &Test
• Load in IDE

Monolithic architecture

Monolithic Architecture - Disadvantages

We have problems in organizational scalability because:

• The more engineers we add to the team, the more code merge conflicts we get

• Our meetings become larger, longer, and less productive

• Once we start seeing these problems, we should consider migrating our

architecture towards Microservices

Microservices architecture VS Monolithic architecture (3 Tier architecture)

Microservices architecture VS Monolithic architecture (3 Tier architecture)

Microservice architecture

• Microservices Architecture organizes our business logic as a collection of

loosely coupled and independently deployed services

• Each service is owned by a small team and has a narrow scope of responsibility.

• Microservices architecture is an industry-proven method of building applications

out of separate distributed modules (microservices) each focused on one

business function or service.

Microservice architecture

• These modules use APIs (often RESTful) and API gateways to connect with other

services, client apps, and other applications in the organization.

• The API-driven approach enables loose connections and weak dependence

between components.

• Each module in a microservices application has its own business logic,

database.

Microservice architecture

Why Microservices?

1- Down-Time

If Microservice-A is down that does not mean Microservice-B will be down also.

2 - Deployment

The deployment will be easier and easier compare with the Monolithic structure.

3 - Using more than one programming language

You can use PHP for Microservice-A on the other you can use Java for Microservice-B.

Why Microservices?

4- Easy to test

When you use Microservice that is mean small functionality you will be testing.

5- Load Balancing

It's more and more important we can benefit when we use a Microservices style

structure in our system. Balanced distribution traffic on our services.

Microservice architecture - Advantages

1. Smaller Codebase

2. Better Performance and Horizontal Scalability

3. Better Organizational Scalability

4. Better security (Fault Isolation)

Microservice architecture - Advantages

Smaller Codebase:

Benefits of Smaller Codebase are:

§ Development becomes easier and faster

§ Codebase loads instantaneously in our IDE

§ Building and testing becomes easier and faster

§ Troubleshooting/adding new features becomes easier

§ New developers can become fully productive faster

Performance and Scalability - Benefits

§ Instances become less CPU intensive and less memory-consuming

§ Services can be scaled horizontally by adding more instances of low-end

computers

Fault Isolation – Benefits

§ If we have an issue in one of the services, it is easier to isolate it and
mitigate the problem

Microservice architecture - Advantages

Organizational Scalability - Benefits

§ Each service can be independently

§ Developed

§ Maintained

§ Deployed

§ by a separate small team

§ Leads to high throughput from the entire organization

Microservice architecture - Advantages

Event-driven Architecture

Event-driven architecture is a style that organizes a system as a set of loosely

coupled components that communicate and coordinate through events. These events

can be anything from a user action, a sensor reading, a database update, or an

external trigger.

Key Components of EDA:

1. Event: An event represents a meaningful change or occurrence within a system. It

is a lightweight, immutable.

2. It is an immutable statement of fact or change.

Event-driven Architecture

Events - Examples

• Fact Events

• User clicking on a digital ad

• Item being added to a shopping cart

• Change Events

• Player of a video game

• IoT device (vacuum cleaner)

Event-driven Architecture

Types of Event:

o Temporal Events

o State Events

o Invocation Events

o Notification Events

o Error Events

2. Event Producer(Publisher): This component is responsible for generating and

emitting events. It could be a user interface, a sensor, or any other source that

initiates an event.

3. Event Consumer (Subscriber): The event consumer is the component that listens for

and reacts to events. It could be a service, a function, or any module designed to

respond to specific events.

4. Event Broker(Message Broker): The event broker acts as an intermediary, ensuring

that events are routed from producers to consumers efficiently. It can be implemented

using various messaging systems such as Apache Kafka, RabbitMQ, or AWS Lambda.

5. Event Router: In more complex event-driven systems, you can have an event router

that directs events to their respective event consumers based on predefined rules or

routing logic. This component helps manage the flow of events within the system

Event-driven Architecture

Event-driven Architecture

TIP:

Ensure your event model in an event-driven system contains sufficient

and clear information about the event that occurred. This enables

consumers to quickly respond to events without the need to request

additional data.

Event-driven architecture is commonly used in various applications, including:

•Real-time data processing

•Microservices-based systems

•IoT (Internet of Things) applications

•Systems that require high levels of concurrency and responsiveness

Event-driven Architecture

Event-driven Architecture- Examples

1. E-commerce: EDA can power real-time inventory updates, order processing,

and personalized recommendations, enhancing the shopping experience.

2. IoT (Internet of Things): EDA is ideal for IoT applications, enabling the handling

of vast streams of sensor data and immediate responses to events like

equipment malfunctions or environmental changes.

3. Financial Services: In the world of finance, EDA can be used for real-time

fraud detection, trade execution, and market data analysis.

4. Social Media: Social networks use EDA for real-time updates, notifications,

and content distribution. Such s Twitter

Benefits of Event-Driven Architecture

§ Loose Coupling and Flexibility: EDA promotes loose coupling between components,

allowing them to operate independently. Components can evolve, scale, or be

replaced without affecting the entire system, making the architecture more flexible

and adaptable to changes.

§ Scalability and Performance: EDA enables horizontal scalability by distributing the

workload across multiple components that can handle events concurrently. This

scalability allows systems to handle high volumes of events and provide better

performance under varying loads.

Benefits of Event-Driven Architecture

§ Real-time Responsiveness: By leveraging events, EDA enables real-time

responsiveness to changes and triggers actions immediately. Components can react

to events as they occur, enabling quick decision-making and timely responses to

business needs.

§ Event Sourcing: Events capture the sequence of actions and state changes in the

system, facilitating event sourcing. Event logs provide a historical record of system

behavior, enabling audibility, debugging, and replaying events for analysis or testing.

Software Architecture Patterns

Summary:

§ Model view controller architecture (MVC)

§ Client server architecture

§ There Tier architecture

§ Layered architecture

§ Microservices architecture

§ Event driven architecture

Software design patterns

§ Software design patterns are general reusable solutions to common problems that

occur in software design. They represent best practices for solving certain types of

problems and provide a way to structure code to enhance its clarity, flexibility, and

maintainability.

§ Design patterns are often categorized into creational, structural, and behavioral

patterns.

Design patterns Types:

o Creational Patterns: These patterns deal with the process of object creation.

Examples include Singleton, Factory Method, Abstract Factory, etc.

o Structural Patterns: These patterns focus on the composition of classes or objects.

Examples include Adapter, Decorator, Bridge, etc.

o Behavioral Patterns: These patterns define the ways in which objects interact and

communicate. Examples include Observer, Strategy, Command, etc

Software design patterns

Software design patterns

Creational Patterns Structural Patterns Behavioral Patterns

§ Factory Method

§ Singleton

§ Builder

§ Prototype

§ Abstract Factory

§ Adapter

§ Decorator

§ Bridge

§ Composite

§ Proxy

§ Observer

§ Strategy

§ Command

§ Iterator

The End

