
Software Architecture &
Design

ITSE411

By Marwa Solla

University of Tripoli - Faculty of Information Technology

Software Engineering Department

Software architecture and
design

for modern large-scale systems

Lecture 4 :
Architectural views & styles

What We Learn In This Lecture

• Architectural views

• Architecture styles (MCV, C/S)

Architectural views

• It is impossible to represent all relevant information about a system's architecture
in a single architectural model, as each model only shows one view or
perspective of the system.

• It might show how a system is decomposed into modules, how the run-time
processes interact, or the different ways in which system components are
distributed across a network.

• All of these are useful at different times so, for both design and documentation,
you usually need to present multiple views of the software architecture.

Architectural views

There are different opinions as to what views are required. philippe Krutchen (1995),

in his well-known 4+1 view model of software architecture, suggests that there

should be four fundamental architectural views, which are related using use cases

or scenarios.

The reason behind the name: 4+1

The model has four views: logical, development,
process, and physical. In addition, selected use cases
or scenarios are utilized as the ‘plus one’ view to show
the design. As a result, the model has 4+1 views.
Hence the model is called The 4+1 Architectural View.

1. A logical view:

§ which shows the key abstractions in the system as objects or object classes. It

should be possible to relate the system requirements to entities in this logical

view.

§ Focuses on the functionality of the system.

§ Represents the software components and their interactions without detailing

the implementation.

§ Represents the hierarchy and structure of the software components.

4 + 1 Architectural View

§ UML diagrams are used to represent the logical view, and include class

diagrams, and state diagrams.

§ The Logical View helps in understanding the system's structure and

functionality without getting into the implementation details.

§ Viewer: End User.

4 + 1 Architectural View

Note: Logical View: The functionality. The service.

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Class_diagram
https://en.wikipedia.org/wiki/State_diagram

2. A process view,

§ which shows how, at run-time, the system is composed of interacting processes.

This view is useful for making judgments about non- functional system

characteristics such as performance and availability.

§ It explains the system processes and how they communicate.

§ Captures the concurrency aspects of the design

§ distribution, performance, and scalability are all addressed in the process view.
§ The sequence diagram, communication diagram, and activity diagram are all UML

diagrams that can be used to describe a process view.

4 + 1 Architectural View

Note: Process View: Communication between processes and/or services.

4 + 1 Architectural View

3. A development view,

§ It shows how the software is decomposed for development, that is, it shows the

breakdown of the software into components that are implemented by a single

developer or development team.

§ Describes the organization of the software in its development environment. This

view can be modelled with UML´s component and package diagrams.

§ This view is useful for software managers and programmers.

4. A physical view,
§ It shows the system hardware and how software components are distributed

across the processors in the system. This view is useful for systems engineers

planning a system deployment.
§ Describes the mapping of the software onto the hardware. Deployment

diagrams are used to model this view.

4 + 1 Architectural View

§ The +1 comes in from the scenarios view which is what your end users actually

care about. It’s the system functionality/capabilities

§ Use Case View: It is illustrated by selected use cases or scenarios. It contains

diagrams describing what the system does from a black box perspective. This

view contains use case diagrams.

4 + 1 Architectural View

4 + 1 Architectural View

4 + 1 view model of software architecture

• A logical view Structure (Major elements in the structure)
• A process view Dynamic Behavior (Interaction at run time)
• A development(implementation) view written Code Organization
• A physical view deployment/installation over hardware devices
• Requirement (User View) (+1)

Benefits of 4+1:

-Better organization with better separation of concern

-The 4+1 maps stakeholders to the information they need, without requiring specific

notations.

Drawbacks:

4+1 was created in 1995, where software development was very different than today,

there was no need for more than 2 or 3 views. Nowadays, there are many complex

systems which can´t be represented correctly with 4+1.

4 + 1 view model of software architecture

Architecture styles

A software architecture styles/patterns defines the high-level structure and

organization of a software system. It outlines the fundamental components,

their interactions, and the overall layout of the system.

An architectural style is a set of principles. Sometimes architecture style is

called architecture pattern.

Architecture styles

Architectural Styles Combination

The architecture of a software system is almost never limited to a single

architectural style, but is often a combination of architectural styles that make up

the complete system.

Many Factors affect the choosing the appropriate style. This includes:

Ø The capacity of the organization for design and implementation.

Ø The capabilities and experience of the developers.

Ø The infrastructure and organizational constraints.

Model-View-Controller pattern

The Model-View-Controller is an architectural pattern (MVC) divides an interactive
application into three components. The model contains the core functionality and
data. Views display information to the user. Controllers handle user input. Views
and controllers together comprise the user interface.

Model-View-Controller pattern

Model:

§ The model defines the domain information in the system, independent of how

the user interacts with the information.

§ Represents the application's data.

§ Responsible for managing the data, processing user inputs, and responding to

requests from the View and Controller.

§ Changes to the data in the Model trigger updates to the View.

Model-View-Controller pattern

View

§ The view defines the way the information is presented to the human and the

acceptable set of manipulation capabilities.

§ Represents the user interface (UI) and presentation layer.

§ Displays the data from the Model to the user.

§ Listens for user input and forwards it to the Controller for handling.

Model-View-Controller pattern

Controller

§ Controllers act as an interface between Model and View components to process

all the business logic, incoming requests and manipulate data.

§ Acts as an intermediary between the Model and the View.

§ Handles user input and updates the Model accordingly.

§ Typically contains the application's flow and business logic.

Model-View-Controller pattern

Web application architecture using the MVC pattern

Client-Server architecture

• Client/server describes the relationship between two computer programs in

which one program, the client, makes a service request from another program,

the server.

• The simplest form of client/server system involves a server application that is

accessed directly by multiple clients, referred to as a 2-Tier architectural style.

• A system that follows the client-server pattern is organized as a set of services

and associated servers, and clients that access and use the services.

Client-Server architecture

The major components of this model are:

1. A set of servers that offer services to other components.

Examples of servers include print servers that offer printing services, file

servers that offer file management services, and a compile server, which offers

programming language compilation services.

Client-Server architecture

2. A set of clients that call on the services offered by servers. There will normally be

several instances of a client program executing concurrently on different computers.

3. A network that allows the clients to access these services. Most client-server

systems are implemented as distributed systems, connected using Internet protocols.

Client-Server architecture

An example of a system that is based on the client-server model. This is a multi-user, web-
based system for providing a film and photograph library.

The End

