
BEHAVIORAL DESIGN PATTERNS 
OBSERVER , STRATEGY, COMMAND 



WHAT IS A BEHAVIORAL PATTERN?  

 Help you define the communication between objects in your system and how the flow is controlled in a complex 
program. 

 Behavior patterns are concerned with algorithms and the assignment of responsibilities between objects. 

 The Behavioral design patterns includes : 

 

 

 



WHAT IS A BEHAVIORAL PATTERN CONT …? 



WHAT IS A BEHAVIORAL PATTERN CONT …? 



OBSERVER  DESIGN PATTERN 

 Also known as: Event-Subscriber, Listener 

 Observer is a behavioral design pattern that allows some objects to notify other objects about 

changes in their state. 

 “Define a one-to-many dependency between objects so that when one object changes state, all its 

dependents are notified and updated automatically.” 

 



CONCEPT 

 Observers are basically interested and want to be notified when there is a change made inside that subject. 

So, they register themselves to that subject. When they lose interest in the subject they simply unregister 

from the subject.  

 Sometimes this model is also referred to as the Publisher-Subscriber model. 

 Magazine and newspaper subscriptions. 

 If you subscribe to a newspaper or magazine, you no longer need to go to the store to check if the next issue is 

available. Instead, the publisher sends new issues directly to your mailbox right after publication or even in advance. 

 The publisher maintains a list of subscribers and knows which magazines they’re interested in. Subscribers can leave 

the list at any time when they wish to stop the publisher sending new magazine issues to them. 

 



REAL-LIFE EXAMPLES 

 You might have surfed “Flipkart.com-Online megastore". So when you search for any product and it 

is unavailable then there is option called “Notify me when product is available”. If you subscribe to 

that option then when state of product changes i.e. it is available, you will get notification mail 

“Product is available now you can buy it". In this case, Product is subject and You are an observer. 

 Lets say, your permanent address is changed then you need to notify passport authority and pan 

card authority. So here passport authority and pan card authority are observers and You are a 

subject. 

 On Facebook also, If you subscribe someone then whenever new updates happen then you will be 

notified. 

 



WHEN TO USE IT: 

 When one object changes its state, then all other dependents object must automatically change 

their state to maintain consistency 

 When subject doesn’t know about number of observers it has. 

 When an object should be able to notify other objects without knowing who objects are. 

 



UML & PARTICIPANTS 

 Subject    

 Any number of Observer objects may 
observe a subject.  

 provides an interface for attaching and 
detaching Observer objects.  

  Observer   

 defines an updating interface for objects 
that should be notified of changes in a 
subject.  

  ConcreteSubject  

  stores state of interest to 
ConcreteObserver objects.  

 sends a notification to its observers 
when its state changes.  

   ConcreteObserver    

 maintains a reference to a 
ConcreteSubject object. 

 stores state that should stay consistent 
with the subject's.  

 implements the Observer updating 
interface to keep its state consistent with 
the subject's.  

 



TWEET NOTIFICATION EXAMPLE USING OBSERVER DESIGN PATTERN 

 First we will define the Subject interface: 

 

public interface Subject { 

    public void addSubscriber(Observer 

observer); 

    public void removeSubscriber(Observer 

observer); 

    public void notifySubscribers(String tweet); 

 

} 

• Then we will create Observer interface: 

public interface Observer { 

    public void notification(String handle, String 

tweet); 

} 



 Then we will create concrete subject class 

called PublicFigure 

import java.util.ArrayList; 

import java.util.List; 

public class PublicFigure implements Subject { 

protected List<Observer> observers = new ArrayList<Observer>(); 

    protected String name; 

    protected String handle; 

  public PublicFigure(String name, String handle) { 

        super(); 

        this.name = name; 

        this.handle = "#" + handle; 

    } 

    public String getName() { 

        return name; 

    } 

   public void setName(String name) { 

        this.name = name; 

    } 

  public String getHandle() { 

        return handle; 

    } 

 public void tweet(String tweet) { 

    System.out.printf("\nName: %s, Tweet: %s\n", name, tweet); 

        notifySubscribers(tweet); 

    } 

@Override 

    public synchronized void addSubscriber(Observer observer) { 

        observers.add(observer); 

    } 

@Override 

public synchronized void removeSubscriber(Observer observer) { 

observers.remove(observer); 

} 

@Override 

    public void notifySubscribers(String tweet) { 

     observers.forEach(observer -> observer.notification(handle, 

tweet)); 

    }     } 



 Now we will define Follower class: 

public class Follower implements Observer { 

protected String name; 

 

public Follower(String name) { 

super(); 

        this.name = name; 

    } 

 

@Override 

    public void notification(String handle, String tweet) { 

        System.out.printf("'%s' received notification from Handle: 

'%s', Tweet: '%s'\n", name, handle, tweet); 

} 

} 



public class Main { 

 

public static void main(String args[]) { 

   PublicFigure bobama = new PublicFigure("Barack Obama", 

"bobama"); 

   Follower ajay = new Follower("Ajay"); 

   Follower vijay = new Follower("Vijay"); 

   Follower racheal = new Follower("Racheal"); 

   Follower micheal = new Follower("Micheal"); 

   Follower kim = new Follower("Kim"); 

       bobama.addSubscriber(ajay); 

       bobama.addSubscriber(vijay); 

       bobama.addSubscriber(racheal); 

       bobama.addSubscriber(micheal); 

       bobama.addSubscriber(kim); 

 

      bobama.tweet("Hello Friends!"); 

       bobama.removeSubscriber(racheal); 

       bobama.tweet("Stay Home! Stay Safe!"); 

}    } 



 And here's the output: 

Name: Barack Obama, Tweet: Hello Friends! 

'Ajay' received notification from Handle: '#bobama', Tweet: 'Hello Friends!' 

'Vijay' received notification from Handle: '#bobama', Tweet: 'Hello Friends!' 

'Racheal' received notification from Handle: '#bobama', Tweet: 'Hello Friends!' 

'Micheal' received notification from Handle: '#bobama', Tweet: 'Hello Friends!' 

'Kim' received notification from Handle: '#bobama', Tweet: 'Hello Friends!' 

 

 

Name: Barack Obama, Tweet: Stay Home! Stay Safe! 

'Ajay' received notification from Handle: '#bobama', Tweet: 'Stay Home! Stay 

Safe!' 

'Vijay' received notification from Handle: '#bobama', Tweet: 'Stay Home! Stay 

Safe!' 

'Micheal' received notification from Handle: '#bobama', Tweet: 'Stay Home! 

Stay Safe!' 

'Kim' received notification from Handle: '#bobama', Tweet: 'Stay Home! Stay 

Safe!' 

 Please note that when I unregistered 'Racheal' from Barak Obama's follower list, she stopped receiving notifications. 



PROS AND CONS 

 Pros  

 Open/Closed Principle. You can introduce new subscriber classes without having to change the 

publisher’s code (and vice versa if there’s a publisher interface). 

  You can establish relations between objects at runtime. 

 Cons 

  Subscribers are notified in random order. 

 



STRATEGY DESIGN PATTERN 

“Define a family of algorithms, encapsulate each one, and make them interchangeable. The strategy 

pattern lets the algorithm vary independently from client to client.” 

 Strategy is a behavioral design pattern that lets you define a family of algorithms, put each of them 

into a separate class, and make their objects interchangeable. 

 We can select the behavior of an algorithm dynamically at runtime. 

 

 



WHERE TO USE 

When you need to use one of several algorithms dynamically.  

When you want to configure a class with one of many related classes (behaviors).  

 Use the Strategy pattern when you want to use different variants of an algorithm within an object and be able 

to switch from one algorithm to another during runtime. 

 Use the Strategy when you have a lot of similar classes that only differ in the way they execute some behavior. 

 Use the pattern when your class has a massive conditional operator that switches between different variants 

of the same algorithm. 

 



STRUCTURE & PARTICIPANTS 
 Strategy    

  declares an interface common to all supported algorithms.  

 Context  uses this interface to call the algorithm defined by a 

ConcreteStrategy.  

  ConcreteStrategy   

 implements the algorithm using the Strategy interface.  

 Context    

 is configured with a ConcreteStrategy object. 

 maintains a reference to a Strategy object.  



EXAMPLE 

 In our example a 

navigation app is to 

be implemented 

with the help of a 

strategy design 

pattern. The app 

should calculate a 

route based on 

normal modes of 

transport. The user 

can choose between 

three options: 

 Pedestrian 

(ConcreteStrategyA) 

 Car 

(ConcreteStrategyB) 

 Public transport 

(ConcreteStrategyC) 

 



IN OUR EXAMPLE, 

 the client is the graphical user interface (GUI) of a navigation app with buttons for calculating routes. Once the user 

makes a selection and taps on a button, a concrete route is calculated. The Context (navigator class) has the task of 

calculating and presenting a range of control points on the map. The navigator class has a method for switching the 

active routing strategy. This means it is possible to switch between modes of transport via the client buttons. 

 For example, if the user triggers a command with the pedestrian button of the client, the service “Calculate the 

pedestrian route” (ConcreteStrategyA) is requested. The method executeAlgorithm() (in our example, the 

method: calculateRoute (A, B)) accepts a starting point and destination, and returns a collection of route control 

points. The Context accepts the client command and decides on the right strategy (setStrategy: Pedestrian) 

 The currently selected strategy is stored in the Context (navigator class) using getStrategy(). The results of the 

ConcreteStrategy calculations are used in further processing and the graphical presentation of the route in the 

navigation app. If the user opts for a different route by clicking on the “Car” button afterwards, for example, the 

Context switches to the requested strategy (ConcreteStrategyB) and initiates a new calculation by means of 

another call. At the end of the process, a modified route description is provided for travel by car. 



 Context: 

public class Context { 

    //prescribed standard value (default behavior): ConcreteStrategyA 

    private Strategy strategy = new ConcreteStrategyA();  

    public void execute() {  

        //delegates the behavior to a Strategy object 

        strategy.executeAlgorithm();  

    } 

    public void setStrategy(Strategy strategy) { 

        strategy = strategy; 

    } 

    public Strategy getStrategy() {  

        return strategy;  

    }  

}  

Strategy, ConcreteStrategyA, ConcreteStrategyB: 

interface Strategy {  

    public void executeAlgorithm();  

}  

class ConcreteStrategyA implements Strategy {  

    public void executeAlgorithm() {  

        System.out.println("Concrete Strategy A");  

    }  

}  

class ConcreteStrategyB implements Strategy {  

    public void executeAlgorithm() {  

        System.out.println("Concrete Strategy B");  

    }  

}  



Client 

public class Client {  

 

    public static void main(String[] args) {  

         

       Context context = new Context();  

        context.execute();  

 

        context.setStrategy(new ConcreteStrategyB());  

        context.execute();  

    }  

 

} 



CHECK LIST 

 Identify an algorithm (i.e. a behavior) that the client would prefer to access through a "flex point". 

 Specify the signature for that algorithm in an interface. 

 Bury the alternative implementation details in derived classes. 

 Clients of the algorithm couple themselves to the interface. 

 



PROS & CONS 

 Pros 

 New algorithms that cooperate with the same interface can easily be introduced by encapsulating the 

algorithm separately. 

 When we have multiple algorithms for certain purposes, strategy design pattern is useful and we want our 

app to be flexible in selecting any of the algorithms for specific tasks. 

 Strategy design pattern allows user to select the algorithm needed without a “Switch” statement or a 

number of “if- else” statements. 

 You can replace inheritance with composition. 

 Cons 

 If you only have a couple of algorithms and they rarely change, there’s no real reason to overcomplicate 

the program with new classes and interfaces that come along with the pattern. 

 Clients must be aware of the differences between strategies to be able to select a proper one. 



COMMAND PATTERN 

 Also known as: Action, Transaction 

 Command is a behavioral design pattern that turns a request into a stand-alone object that 

contains all information about the request. This transformation lets you parameterize methods 

with different requests, delay or queue a request’s execution, and support undoable operations. 

 The definition of Command provided in the original Gang of Four book on Design Patterns 

states: “Encapsulate a request as an object, thereby letting you parameterize clients with different 

requests, queue or log requests, and support undoable operations.” 

 



CONCEPT 

 Command declares an interface for all commands, providing a simple execute() method 

which asks the Receiver of the command to carry out an operation.  

 The Receiver has the knowledge of what to do to carry out the request.  

  The Invoker holds a command and can get the Command to execute a request by calling 

the execute method.  

 The Client creates ConcreteCommands and sets a Receiver for the command.  

 The ConcreteCommand defines a binding between the action and the receiver. When 

the Invoker calls execute the ConcreteCommand will run one or more actions on the 

Receiver. 



WHEN TO USE IT: 

 The Command Pattern is useful when: 

 A history of requests is needed 

 You need callback functionality 

 Requests need to be handled at variant times or in variant orders 

 You'll see command being used a lot when you need to have multiple undo operations, where a 

stack of the recently executed commands are maintained. To implement the undo, all you need to 

do is get the last Command in the stack and execute it's undo() method. 

 You'll also find Command useful for wizards, progress bars, GUI buttons and menu actions, and 

other transactional behavior.  

 



STRUCTURE & PARTICIPANTS 

 Command   

  declares an interface for executing an operation. 

 ConcreteCommand 

 defines a binding between a Receiver object and an action.  

 implements Execute method by invoking the corresponding operation(s) on Receiver. 

 Client  

 creates a ConcreteCommand object and sets its receiver.  

 

 

 

 

 Invoker    

 asks the command to carry out the request. 

 Receiver 

 knows how to perform the operations. 



REAL WORLD EXAMPLE 

 Let's use a remote control as the example. Our remote is the center of home automation and can control everything. 

We'll just use a light as an example, that we can switch on or off, but we could add many more commands. 

 First we'll create our command interface: 

 
//Command 

public interface Command{  

public void execute();} 

 Now let's create two concrete commands. One will turn on the lights, another turns off lights 

 

//Concrete Command 

public class LightOnCommand implements Command{  

//reference to the light   

Light light;   

public LightOnCommand(Light light){  

   this.light = light;  }  

 public void execute(){   

  light.switchOn();  }}  

//Concrete Command 

public class LightOffCommand implements Command{  

//reference to the light  

 Light light;  

public LightOffCommand(Light light){   

  this.light = light;  }   

public void execute(){    

 light.switchOff();  }} 



 Light is our receiver class, so let's set that up now: 

//Receiver 

public class Light{   

private boolean on;  

public void switchOn(){    

 on = true;  }  

 public void switchOff(){   

  on = false;  }} 

 Our invoker in this case is the remote control. 

//Invoker  

public class RemoteControl{   

private Command command;  

 public void setCommand(Command command){    

this.command = command;  }   

public void pressButton(){   

  command.execute();  }} 

 Finally we'll set up a client to use the invoker 

/Client 

public class Client{   

public static void main(String[] args)    {   

  RemoteControl control = new RemoteControl();   

 Light light = new Light(); 

Command lightsOn = new LightsOnCommand(light);    

Command lightsOff = new LightsOffCommand(light);    

//switch on   

control.setCommand(lightsOn);  

control.pressButton();    //switch off    

control.setCommand(lightsOff); 

control.pressButton();  }} 



PROS & CONS 

 Pros 

  Single Responsibility Principle. You can decouple classes that invoke operations from classes that 

perform these operations. 

  Open/Closed Principle. You can introduce new commands into the app without breaking existing client 

code. 

  You can implement undo/redo. 

  You can implement deferred execution of operations. 

  You can assemble a set of simple commands into a complex one. 

 Cons 

  The code may become more complicated since you’re introducing a whole new layer between senders 

and receivers. 

 



COMPARISON BETWEEN PATTERNS 

 Command and Strategy may look similar because you can use both to parameterize an object with 

some action. However, they have very different intents. 

 You can use Command to convert any operation into an object. The operation’s parameters become fields 

of that object. The conversion lets you defer execution of the operation, queue it, store the history of 

commands, send commands to remote services, etc. 

 On the other hand, Strategy usually describes different ways of doing the same thing, letting you swap 

these algorithms within a single context class. 

 Prototype can help when you need to save copies of Commands into history.  

 Bridge, Strategy (and to some degree Adapter) have very similar structures. Indeed, all of these 

patterns are based on composition, which is delegating work to other objects. However, they all 

solve different problems 

 Decorator lets you change the skin of an object, while Strategy lets you change the guts. 

 Command, and Observer address various ways of connecting senders and receivers of requests: 

 Command establishes unidirectional connections between senders and receivers. 

 Observer lets receivers dynamically subscribe to and unsubscribe from receiving requests. 

 

  

 

https://refactoring.guru/design-patterns/command
https://refactoring.guru/design-patterns/strategy
https://refactoring.guru/design-patterns/prototype
https://refactoring.guru/design-patterns/command


THE DIFFERENCE BETWEEN BRIDGE AND ABSTRACT FACTORY 

 Abstract Factory is creational design pattern, which deals with object creation. Bridge is structural 

design pattern, which deals with class structure and composition. 

 In Bridge, abstraction and implementation will vary independently. But in abstract factory, if you 

change abstraction ( interface), you have to change client. 

 In Bridge, The class itself can be considered as the implementation and the behavior of the class 

as the abstraction. 

 The Abstract Factory on the other hand provides an interface for creating groups of related or 

dependent objects, 


