
SOFTWARE DESIGN PATTERN (CREATIONAL PATTERN)
LEC3: SINGELTON, PROTOTYPE

SINGLETON DESIGN PATTERN

 Sometimes it’s important for some classes to have exactly one instance

 Singleton Design Pattern“Ensure a class only has one instance, and provide a global point of

access to it.”

 A particular class should have only one instance. We will use only that instance whenever we are

in need.

WHERE TO USE?

 The perfect example on when to use a singleton class is a logger implementation in which all the

resource write in the same log file and is thread safe. Other examples:

 database connections and shared network resources;

 whenever the application needs to read a file from the server. Only in this case the object of the

application will be able to access the files stored on the server.

 config files;

 The singleton pattern can be used with Abstract Factory, Builder, and Prototype design patterns to

have a unique object

 When only one instance of a class are allowed.

STRUCTURE

 implement the this design pattern in the Java programming language,

developers need to have the following:

 Static Member: It will create a single instance in the JVM memory as

static are class level variables.

 Private Constructor: It will restrict the instantiation of the Singleton

class from the outside world (i.e. Initialization of this class using the

new keyword is prevented)

 Static factory method: This provides the global point of access to the

Singleton object and returns the instance to the caller

 Participant: Singleton

 defines an Instance operation that lets clients access its unique instance.

EXAMPLE: LOGGER

What is wrong with this code?

 public class Logger

 {

 public Logger() { }

 public void LogMessage()
{

 //Open File "log.txt"

 //Write Message

 //Close File

 }

 }

 Since there is an external Shared Resource (“log.txt”), we

want to closely control how we communicate with it.

 We shouldn’t have to create the Logger class every time we

want to access this Shared Resource. Is there any reason to?

 We need ONE.

LOGGER – AS A SINGLETON

public class Logger

{

 private Logger(){}

 private static Logger uniqueInstance;

 public static Logger getInstance()

 {

 if (uniqueInstance == null)

 uniqueInstance = new Logger();

 return uniqueInstance;

 }

}

Note the

parameterless

constructor

 Lazy Instantiation

 Objects are only created when it is needed

 Helps control that we’ve created the Singleton just once.

THREADING

public class Singleton

{

 private Singleton() {}

 private static Singleton uniqueInstance;

 public static Singleton getInstance()

 {

 if (uniqueInstance == null)

 uniqueInstance = new Singleton();

 return uniqueInstance;

 }

}

What would happen if two

different threads accessed

this line at the same time?

OPTION #1: SIMPLE LOCKING

public class Singleton

{

 private Singleton() {}

 private static Singleton uniqueInstance;

 public static Singleton getInstance()

 {

 synchronized(Singleton.class) {

 if (uniqueInstance == null)

 uniqueInstance = new Singleton();

 }

 return uniqueInstance;

 }}

OPTION #2 – DOUBLE-CHECKED LOCKING

public class Singleton

{

 private Singleton() {}

 private volatile static Singleton uniqueInstance;

 public static Singleton getInstance()

 {

 if (uniqueInstance == null) {

 synchronized(Singleton.class) {

 if (uniqueInstance == null)

 uniqueInstance = new Singleton();

 }

 }

 return uniqueInstance;

 }}

Volatile keyword is used to modify the

value of a variable by different threads. It

is also used to make classes thread safe. It

means that multiple threads can use a

method and instance of the classes at the

same time without any problem. The volatile

keyword can be used either with primitive

type or objects.

OPTION #3: “EAGER” INITIALIZATION

public class Singleton

{

 private Singleton() {}

 private static Singleton uniqueInstance = new Singleton()

 public static Singleton getInstance()

 {

 return uniqueInstance;

 }} 1. Instance is created the first time any

member of the class is referenced.

2. Good to use if the application always

creates; and if little overhead to create.

Runtime guarantees

that this is thread-

safe

REAL-LIFE EXAMPLE

 Suppose you are a member of a football team, and in a tournament your team is

going to play against another team.

 As per the rules of the game, the captain of each side must go for a toss to decide

which side will get the ball first.

 So, if your team does not have a captain, you need to elect someone as a captain

first. And at the same time, your team cannot have more than one captain.

 In this example, we have MakeCaptain class which can be used to get a captain

object and it has a private constructor private, so that we cannot instantiate in

normal fashion.

 When we attempt to create an instance of the class, we are checking whether we

already have one available copy. If we do not have any such copy, we’ll create it;

otherwise, we’ll simply reuse the existing copy.

OUTPUT:

IMPLEMENTATION

 In the preceding example, we wrote a class with a method that creates a new instance of the class if one does not

exist.

 Do note:

 The instance attribute in the class is defined private and static

 The constructor of the class is made private so that there is no other way to instantiate the class

 The accessor function for obtaining the reference to the singleton object is defined public and static

 This example is known as Lazy Initialization – which means that it restricts the instance creation until it is requested

for the first time.

PORS & CONS

 Pros:

 the singleton class is instantiated only once in the life cycle of the app;

 you can use it as many times needed;

 the singleton class cannot be extended and if it is implemented correctly i.e. the get method should be

synchronized and static,

it is thread safe;

 Cons:

 problems during testing. (when the singleton class accesses a shared resource and the execution of the tests is

important);

PROTOTYPE DESIGN PATTERN

 Prototype is a creational design pattern that allows cloning objects, even complex

ones, without coupling to their specific classes.

 All prototype classes should have a common interface that makes it possible to

copy objects even if their concrete classes are unknown.

 Prototype objects can produce full copies since objects of the same class can

access each other’s private fields.

WHERE TO USE

 When a system needs to be independent of how its objects are created, composed, and

represented.

 When instances of a class can have one of only a few different combinations of state. It may be more

convenient to install a corresponding number of prototypes and clone them rather than instantiating the

class manually, each time with the appropriate state.

 When the cost of creating an object is expensive or complicated.

 When you want to keep the number of classes in an application minimum.

STRUCTURE & PARTICIPANTS

 Prototype

 declares an interface or abstract class for cloning itself.

 ConcretePrototype

 implements an operation for cloning itself.

 Client

 creates a new object by asking a prototype to clone itself.

 Cloneable is an interface that is used to create the exact copy of an object. It exists in java. lang package. A class must

implement the Cloneable interface if we want to create the clone of the class object. The clone() method of the Object

class is used to create the clone of the object.

EXAMPLE

 a smartphone company produces thousands of mobiles with the same hardware and software.

But with different model (color), the price could change.

 We have:

– Basic prototype: SmartPhone abstract class with clone() method.

– Concrete prototypes: Samsung and Apple implement the clone() method.

IMPLEMENT JAVA PROTOTYPE PATTERN

CLASS DIAGRAM

 We set SmartPhone class with a default additionalPrice =

0. It will be also a field with default value in Samsung and

Apple subclasses.

 – Samsung class and Apple class have their own base

price.

 – PrototyPatternExample.java is the client.

 We will clone Samsung object and Apple object, then we

add additional price for each object.

STEP BY STEP

CREATE AN ABSTRACT CLASS THAT

IMPLEMENTS CLONEABLE

SMARTPHONE.JAVA

package com.grokonez.designpattern.prototype;

public abstract class SmartPhone implements Cloneable {

 private String model;

 private int price;

 private int additionalPrice = 0;

 public String getModel() {

 return model; }

 public void setModel(String model) {

 this.model = model; }

 public int getPrice() {

 return price + this.additionalPrice; }

 public void setPrice(int price) {

 this.price = price; }

 public void setAdditionalPrice(int additionalPrice) {

 this.additionalPrice = additionalPrice; }

 public SmartPhone clone() throws CloneNotSupportedException {

 return (SmartPhone) super.clone(); }

 @Override

 public String toString() {

 return "SmartPhone [model=" + getModel() + ", price=" +

getPrice() + "]";

 }

}

Syntax of the clone() method is : protected

Object clone() throws CloneNotSupportedException.

If the object's class doesn't implement Cloneable

interface then it throws

an exception 'CloneNotSupportedException'

public class Samsung extends SmartPhone {

 public Samsung(String model) {

 this.setPrice(700);

 this.setModel(model);

 }

 @Override

 public SmartPhone clone() throws
CloneNotSupportedException {

 return (Samsung) super.clone();

 }

}

Create subclass with clone() method

Samsung.java

Apple.java

public class Apple extends SmartPhone {

 public Apple(String model) {

 this.setPrice(900);

 this.setModel(model);

 }

 @Override

 public SmartPhone clone() throws

CloneNotSupportedException {

 return (Apple) super.clone();

 }

}

RUN TEST

PROTOTYPATTERNEXAMPLE.JAVA

public class PrototyPatternExample {

 public static void main(String[] args) throws CloneNotSupportedException {

 SmartPhone note10 = new Samsung("Note10");

 SmartPhone iphoneX = new Apple("iPhoneX");

 System.out.println(note10);

 System.out.println(iphoneX);

 System.out.println("=== Products for VIPs ===");

 SmartPhone note10Gold = note10.clone();

 note10Gold.setAdditionalPrice(50);

 System.out.println(note10Gold);

 SmartPhone iphoneX128 = iphoneX.clone();

 iphoneX128.setAdditionalPrice(100);

 System.out.println(iphoneX128);

 }}

Result:

SmartPhone [model=Note10, price=700]

SmartPhone [model=iPhoneX, price=900]

=== Products for VIPs ===

SmartPhone [model=Note10, price=750]

SmartPhone [model=iPhoneX, price=1000]

PROS & CONS OF USING PROTOTYPE PATTERN

 Pros

 Reusability: In case we want to create an instance of a class with many default values, or in same

complicated processes, Prototype Pattern is useful. We can focus on other activities instead.

 Reducing initialization: We can create new instances at a cheaper cost.

 Simple copy process: We only need to call clone() method, it is simple and easy-reading.

 Cons

 Each subclass have to implement clone() method or alternative copy methods.

 Building clone for existing class may be complicated. For example, implementing Cloneable interface

can constrain all subclasses/implementation to implement clone() method (some class may not

need).

QUESTIONS!

