Regular Expressions

1. Introduction

o Aregular expression is a set of special characters that define a
pattern.

o They are a type of language that is intended for the matching and
manipulation of text.

o In web development they are commonly used to test whether a user's
input matches a predictable sequence of characters, such as those in
a phone number, postal or zip code, or email address.

o Regular expressions are a concise way to eliminate the conditional
logic that would be necessary to ensure that input data follows a
specific format.

o Consider a postal code: in Canada a postal code is a letter, followed by
a digit, followed by a letter, followed by an optional space or dash,
followed by number, letter, and number. Using if statements, this
would require many nested conditionals (or a single if with a very
complex expression). But using regular expressions, this pattern check
can be done using a single concise function call.

1.1 Regular Expression Syntax

o Aregular expression consists of two types of characters: literals and
metacharacters.

o Aliteral is just a character you wish to match in the target (i.e., the
text that you are searching within).

o A metacharacter is a special symbol that acts as a command to the
regular expression parser.

o There are 14 metacharacters described in the php implementation:

JNNOAS[*2{)+
o To use a metacharacter as a literal, you will need to escape it by

prefacing it with a backslash (\).
o Table 1 shows Common Regular Expression Patterns.

4 o] Assall

Pattern

A qwerty

\t
\n

[qwerty]

[“qwerty]

[a-z]

0

Description
If used at the very start and end of the regular
expression, it means that the entire string (and not just a
substring) must match the rest of the regular expression
contained between the / and the $ symbols.

Matches a tab character.
Matches a new-line character.
Matches any character other than ‘n.

Matches any single character of the set contained
within the brackets.

Matches any single character not contained within the
brackets.

Matches any single character within range of
characters.

Matches any word character. Equivalent to [a-zA-Z0-
9].

Matches any nonword character.

Matches any white-space character.

Matches any nonwhite-space character.
Matches any digit.

Matches any nondigit.

Indicates zero or more matches.

Indicates one or more matches.

Indicates zero or one match.

Indicates exactly n matches.

Indicates n or more matches.

Indicates at least n but no more than m matches.
Matches any one of the terms separated by the |
character. Equivalent to Boolean OR.

Groups a subexpression. Grouping can make a regular
expression easier to understand.

o In PHP, regular expressions are contained within forward slashes.
So, for instance, to define a regular expression, you would use the

following:

$pattern = '"Sran/';

o It should be noted that regular expression pattern checks are case

sensitive.

o Thisregular expression will find matches in all three of the following

strings:

'randy connolly’
'Sue ran to the store'
'I would like a cranberry'

4 (e 2 daial)

o To perform the pattern check in PHP, you would write something
similar to the following:

$pattern = 'Jran/';

$check = '"Sue ran to the store';

if (preg_match(Spattern, $check)) {
echo 'Match found!';

}
o To perform the same pattern check in JavaScript, you would write

something similar to the following:

var pattern = /ran/;
if (pattern.test('Sue ran to the store')) {
document .write('Match found!');

}
o In JavaScript a regular expression is its own data type. Just as a
string literal begins and ends with quote characters, in JavaScript, a
regular expression literal begins and ends with forward slashes.

Example#l

The best way to understand regular expressions is to work through the
creation of one. For instance, if we wished to define a regular expression
that would match a North American phone number without the area
code, we would need one that matches any string that contains three
numbers, followed by a dash, followed by four numbers without any
other character. The regular expression for this would be:

AMd{3}-\d{4}$

In this example, the dash is a literal character; the rest are all
metacharacters. The A and $ symbol indicate the beginning and end of the
string, respectively; they indicate that the entire string (and not a
substring) can only contain that specified by the rest of the
metacharacters.

The metacharacter \d indicates a digit, while the metacharacters {3} and
{4} indicate three and four repetitions of the previous match (i.e., a digit),
respectively.

A more sophisticated regular expression for a phone number would not
allow the first digit in the phone number to be a zero (“0”) or a one (“1”).
The modified regular expression for this would be:

A[2-9]\d{2}-\d{4}$

4 3 Al

The [2-9] metacharacter indicates that the first character must be a digit
within the range 2 through 9.

We can make our regular expression a bit more flexible by allowing either
a single space (440 6061), a period (440.6061), or a dash (440-6061)
between the two sets of numbers. We can do this via the []
metacharacter:

A[2-9]\d{2}[-\s\.]\d{4}$

This expression indicates that the fourth character in the input must
match one of the three characters contained within the square brackets
(- matches a dash, \s matches a white space, and \. matches a period). We
must use the escape character for the dash and period, since they have a
metacharacter meaning when used within the square brackets.

If we want to allow multiple spaces (but only a single dash or period) in
our phone, we can modify the regular expression as follows.

A[2-9]\d{2}[-\s\.]\s*\d{4}$

4 (x4 il

