
PHP MySQL Prepared Statements

What is Prepared Statement

A prepared statement (also known as parameterized statement) is

simply a SQL query template containing placeholder instead of the

actual parameter values. These placeholders will be replaced by the

actual values at the time of execution of the statement.

MySQLi supports the use of anonymous positional placeholder (?), as

shown below:

INSERT INTO persons (first_name, last_name, email) VALUES (?,
?, ?);

While, PDO supports both anonymous positional placeholder (?), as well

as the named placeholders. A named placeholder begins with a colon

(:) followed by an identifier, like this:

INSERT INTO persons (first_name, last_name, email)
VALUES (:first_name, :last_name, :email);

The prepared statement execution consists of two stages: prepare and

execute.

 Prepare — At the prepare stage a SQL statement template is created

and sent to the database server. The server parses the statement

template, performs a syntax check and query optimization, and stores it

for later use.

 Execute — During execute the parameter values are sent to the server.

The server creates a statement from the statement template and these

values to execute it.

Prepared statements is very useful, particularly in situations when you

execute a particular statement multiple times with different values, for

example, a series of INSERT statements. The following section describes

some of the major benefits of using it.

Advantages of Using Prepared

Statements

A prepared statement can execute the same statement repeatedly with

high efficiency, because the statement is parsed only once again, while it

can be executed multiple times. It also minimize bandwidth usage, since

upon every execution only the placeholder values need to be

transmitted to the database server instead of the complete SQL

statement.

Prepared statements also provide strong protection against SQL

injection, because parameter values are not embedded directly inside

the SQL query string. The parameter values are sent to the database

server separately from the query using a different protocol and thus

cannot interfere with it. The server uses these values directly at the point

of execution, after the statement template is parsed. That's why the

prepared statements are less error-prone, and thus considered as one of

the most critical element in database security.

The following example will show you how prepared statements actually

work:

Example
<?php

/* Attempt MySQL server connection. Assuming you are

running MySQL

server with default setting (user 'root' with no

password) */

$link = mysqli_connect("localhost", "root", "", "demo");

// Check connection

if($link === false){

 die("ERROR: Could not connect. " .

mysqli_connect_error());

}

// Prepare an insert statement

$sql = "INSERT INTO persons (first_name, last_name,

email) VALUES (?, ?, ?)";

if($stmt = mysqli_prepare($link, $sql)){

 // Bind variables to the prepared statement as

parameters

 mysqli_stmt_bind_param($stmt, "sss", $first_name,

$last_name, $email);

 /* Set the parameters values and execute

 the statement again to insert another row */

 $first_name = "Hermione";

https://www.tutorialrepublic.com/sql-tutorial/sql-injection.php
https://www.tutorialrepublic.com/sql-tutorial/sql-injection.php

 $last_name = "Granger";

 $email = "hermionegranger@mail.com";

 mysqli_stmt_execute($stmt);

 /* Set the parameters values and execute

 the statement to insert a row */

 $first_name = "Ron";

 $last_name = "Weasley";

 $email = "ronweasley@mail.com";

 mysqli_stmt_execute($stmt);

 echo "Records inserted successfully.";

} else{

 echo "ERROR: Could not prepare query: $sql. " .

mysqli_error($link);

}

// Close statement

mysqli_stmt_close($stmt);

// Close connection

mysqli_close($link);

?>

As you can see in the above example we've prepared

the INSERT statement just once but executed it multiple times by

passing the different set of parameters.

Explanation of Code (Procedural style)

Inside the SQL INSERT statement (line no-12) of the example above, the

question marks is used as the placeholders for

the first_name, last_name, email fields values.

The mysqli_stmt_bind_param() function (line no-16) bind variables to

the placeholders (?) in the SQL statement template. The placeholders (?)

will be replaced by the actual values held in the variables at the time of

execution. The type definition string provided as second argument i.e.

the "sss" string specifies that the data type of each bind variable is

string.

The type definition string specify the data types of the corresponding

bind variables and contains one or more of the following four

characters:

 b — binary (such as image, PDF file, etc.)

 d — double (floating point number)

 i — integer (whole number)

 s — string (text)

The number of bind variables and the number of characters in type

definition string must match the number of placeholders in the SQL

statement template.

Using Inputs Received through a Web

Form

If you remember from the previous chapter, we've created an HTML

form to insert data into database. Here, we're going to extend that

example by implementing the prepared statement. You can use the

same HTML form to test the following insert script example, but just

make sure that you're using the correct file name in the action attribute

of the form.

Here's the updated PHP code for inserting the data. If you see the

example carefully you'll find we didn't use

the mysqli_real_escape_string() to escape the user inputs, like we've

done in the previous chapter example. Since in prepared statements,

user inputs are never substituted into the query string directly, so they

do not need to be escaped correctly.

Example
<?php

/* Attempt MySQL server connection. Assuming you are

running MySQL

server with default setting (user 'root' with no

password) */

$link = mysqli_connect("localhost", "root", "", "demo");

// Check connection

if($link === false){

 die("ERROR: Could not connect. " .

mysqli_connect_error());

}

https://www.tutorialrepublic.com/php-tutorial/php-mysql-insert-query.php#insert-data-into-database-using-form

// Prepare an insert statement

$sql = "INSERT INTO persons (first_name, last_name,

email) VALUES (?, ?, ?)";

if($stmt = mysqli_prepare($link, $sql)){

 // Bind variables to the prepared statement as

parameters

 mysqli_stmt_bind_param($stmt, "sss", $first_name,

$last_name, $email);

 // Set parameters

 $first_name = $_REQUEST['first_name'];

 $last_name = $_REQUEST['last_name'];

 $email = $_REQUEST['email'];

 // Attempt to execute the prepared statement

 if(mysqli_stmt_execute($stmt)){

 echo "Records inserted successfully.";

 } else{

 echo "ERROR: Could not execute query: $sql. " .

mysqli_error($link);

 }

} else{

 echo "ERROR: Could not prepare query: $sql. " .

mysqli_error($link);

}

// Close statement

mysqli_stmt_close($stmt);

// Close connection

mysqli_close($link);

?>

Note: Though escaping user inputs is not required in prepared

statements, you should always validate the type and size of the data

received from external sources and enforces appropriate limits to

protect against system resources exploitation.

