Glogleoll Ayidli Auls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll
Sheet 2 eloll + B9ull e 2 uill + §polaoll yailo : Wilogleoll ;a0

Arrays

2.1 Introduction to Array:

= An array is a collection of similar data elements. These data elements have the same data type. The
elements of the array are stored in consecutive memory locations and are referenced by an index
(also known as the subscript). The subscript is an ordinal number which is used to identify an
element of the array:

Marks1 Marks5 Marks9 Marks13 Marks17

Marks2 Marks6 Marks10 Marks14 Marks18

Marks3 Marks7 Marks11 Marks15 Marks19

1 1 1 1 [

Marks4 Marks8 Marks12 Marks16 Marks20

L J . L L1 [

Figure 2.1: Twenty variables for 20 students.

2.2 DECLARATION OF ARRAYS

An array must be declared before being used. Declaring an array means specifying the following:

= Data type—the kind of values it can store, for example, int, char, float, double.
= Name—to identify the array.
= Size—the maximum number of values that the array can hold

Arrays are declared using the following syntax:
type name([size];

The type can be either int, float, double, char, or any other valid data type. The number within brackets
indicates the size of the array, i.e., the maximum number of elements that can be stored in the array.
For example, if we write,

int marks[10];

Wl ogleoll Asidi Asls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll
Sheet 2 elyoll + by9ull e 2l + Bpolaoll yadlo : Wlogleoll yaa0

then the statement declares marks to be an array containing 10 elements. In C, the array index starts
from zero. The first element will be stored in marks[0], second element in marks[1], and so on.
Therefore, the last element, that is the 10th element, will be stored in marks[9]. Note that O, 1, 2, 3
written within square brackets are the subscripts. In the memory, the array will be stored as shown in
Fig. 2.2.

1 st 2nd 3rd 4“1 5th 6lh ?II'I Sth th 1 Olh
element | element | element | element | element | element | element | element | element | element

marks[0] marks[1] marks[2] marks[3] marks[4] marks[5] marks[6] marks[7] marks[8] marks[9]

Figure 2.2: Memory representation of an array of 10 elements.

Figure 2.3 shows how different types of arrays are declared.

data type

f

int marks [10]; O M 2 [@ ([©’ [[[9]

array name

f

char name [15]; 01 (1] [2 (3] [4] [5] [6] [7] [8] [9] [0 [11])[12] [13] [14]

array size

|

float salary [S5]; [0] [1] [2] [3] [4]

Figure 2.3: Declaring arrays of different data types and sizes.

2.3 ACCESSING THE ELEMENTS OF AN ARRAY

Storing related data items in a single array enables the programmers to develop concise and efficient
programs.

To access all the elements, we must use a loop. Now to process all the elements of the array, we use a
loop as shown in Fig. 2.4.

// Set each element of the array to -1
int i, marks[10];
for(i=0;i<10;i++)

marks[i] = -1;

Figure 2.4: Declaring arrays of different data types and sizes.

Glogleoll Ayidli Auls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll
Sheet 2 eloll + B9ull e 2 uill + §polaoll yailo : Wilogleoll ;a0

Figure 3.5 shows the result of the code shown in Fig. 3.4. The code accesses every individual element of
the array and sets its value to —1. In the for loop, first the value of marks[0] is set to —1, then the value of
the index (i) is incremented and the next value, that is, marks[1] is set to —1. The procedure continues
until all the 10 elements of the array are set to —1.

A =1 =1 =1 =1 =1 =1 =1] =1 -1
O M @21 @B @ 61 . [7] [8 [9]

Figure 2.5: Array marks after executing the code given in Fig. 2.4.

Note There is no single statement that can read, access, or print all the elements of an array. To do

this, we have to use a loop to execute the same statement with different index values.

2.3.1 Calculating the Address of Array Elements

You must be wondering how C gets to know where an individual element of an array is located in the
memory. The answer is that the array name is a symbolic reference to the address of the first byte of the
array.

When we use the array name, we are actually referring to the first byte of the array.

Since an array stores all its data elements in consecutive memory locations, storing just the base
address, that is the address of the first element in the array, is sufficient. The address of other data
elements can simply be calculated using the base address. The formula to perform this calculation is,

Address of data element, A[k] = BA(A) + w(k)
Here,
A is the array,
k is the index of the element of which we have to calculate the address,
BA is the base address of the array A,

and w is the size of one element in memory, for example, size of int is 2.

Wl ogleoll Asidi Asls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll
Sheet 2 elyoll + by9ull e 2l + Bpolaoll yadlo : Wlogleoll yaa0

Example 3.1 Given an array int marks|[]={99,67,78,56,88,90,34,85}, calculate the address of marks[4]
if the base address = 1000.

Solution

marks[0] marks[1] marks[2] marks[3] marks[4] marks[5] marks[6] marks[7]
1000 1002 1004 1006 1008 1010 1012 1014

We know that storing an integer value requires 2 bytes, therefore, its size is 2 bytes.

marks[4] = 1000 + 2(4 — 0) = 1000 + 2(4) = 1008

2.4 STORING VALUES IN ARRAYS

Initialize the elements during declaration

Storing values in an array Input values for the elements from the keyboard

Assign values to individual elements

Figure 2.6: Storing values in an array.

Initializing Arrays during Declaration:

Arrays are initialized by writing,

type array_name[size]={list of values}; marks[0] 90

marks[1] 82
marks[2] 78
marks[3] 95
marks[4] 88

int marks[5]={90, 82, 78, 95, 88};

Figure 2.7: Initialization of array marks[5].

Wl ogleoll Asidi Asls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll
Sheet 2 elyoll + by9ull e 2l + Bpolaoll yadlo : Wlogleoll yaa0

While initializing the array at the time of declaration, the programmer may omit the size of the array.
For example,

int marks|[]= {98, 97, 90};

Figure 2.8 shows the initialization of arrays.

int marks [5] = {90, 45, 67, 85, 78}; | 90 | 45 | 67 | 85 | 78 |
O M1 & B M
Rest of the
int marks [5] = {90, 45}; l 90 I 45 | 0 l 0 | 0 | elements are

; filled with O's
or 0ol B

int marks [] = {90, 45, 72, 81, 63, 54}; [90 l 45 | 72 ‘ 81 | 63 l 54 ‘
o 0 @& B M1 B

int marks [5] = {0}; ‘ 0 I 0 | 0 ‘ 0 | 0 |
o 0 = Bl M4

Figure 2.8: Initialization of array elements.

Inputting Values from the Keyboard

An array can be initialized by inputting values from the keyboard. In this method, a while/do—while or a
for loop is executed to input the value for each element of the array. For example, look at the code
shown in Fig. 2.9

int i, marks[10];
for(i=0;i<10;i++)
scanf("%d", &marks[i]);

Figure 2.9: Code for inputting each element of the array.

Glogleoll Ayidli Auls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll
Sheet 2 eloll + B9ull e 2 uill + §polaoll yailo : Wilogleoll ;a0

Assigning Values to Individual Elements

The third way is to assign values to individual elements of the array by using the assignment operator.
Any value that evaluates to the data type as that of the array can be assigned to the individual array
element. A simple assignment statement can be written as

marks[3] = 100;

int i, arri[10], arr2[10]; // Fill an array with even numbers
ar\r\l[lo] = {0)112:3141516:7:819}; int i,arr[10];
for(i=0;i<10;i++) for(i=0;i<10;i++)
arr2[i] = arri[i]; arr[i] = i*2;
Figure 2.10: Code to copy an array at the Figure 2.11: Code for filling an array with even
individual element level. numbers.

2.5 OPERATIONS ON ARRAYS

There are a number of operations that can be preformed on arrays. These operations include:

= Traversing an array.

= |nserting an element in an array.

= Searching an element in an array.

= Deleting an element from an array.

= Merging two arrays.

= Sorting an array in ascending or descending order.

2.5.1 Traversing an Array

Traversing an array means accessing each and every element of the array for a specific purpose.

Traversing the data elements of an array A can include printing every element, counting the total
number of elements, or performing any process on these elements. Since, array is a linear data structure
(because all its elements form a sequence), traversing its elements is very simple.

The algorithm for array traversal is given in Fig. 3.12.

Wl ogleoll Asidi Asls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll
Sheet 2 elyoll + by9ull e 2l + Bpolaoll yadlo : Wlogleoll yaa0

Step 1: [INITIALIZATION] SET I = lower_ bound
Step 2: Repeat Steps 3 to 4 while I <= upper_bound
Step 3: Apply Process to A[I]
Step 4: SET I =1+ 1
[END OF LOOP]
Step 5: EXIT

Figure 2.12: Algorithm for array traversal.

Programming Examples:

1. Write a program to read and display » numbers using an array.

#include <stdio.h>
#include <conio.h>
int main()
{
int i, n, arr[20];
clrscr();
printf("“\n Enter the number of elements in the array : “);
scanf("%d", &n);
for(i=0;i<n;i++)
{
printf("\n arr[%d] = ", i);
scanf("#d",&arr[i]);
¢
printf("\n The array elements are ");
for(i=0;i<n;i++)
printf("\t ¥d", arr[i]);
return 0;

}
Output

Enter the number of elements in the array : 5
arr[0] =
arr[1]
arr[2]
arr[3]
arr[4]
The array elements are 1 2 3 4 5

n
VoW e

Ologleoll Aidi fiys ITGS220 : , ol 50,

Sheet 2

Data structure &bl «usSlyi : ,,d0ll

> waoll gaua clég i : polaoll

gloll + Bl Jle 2yl + Bpolaoll paily : Slogleoll ,ua0

2. Writé a program to find the mean of 7 numbers using arrays.

#include <stdio.h>
#include <conio.h>
int main()

{

}
Output

int i, n, arr[20], sum =0;
float mean = 0.0;
clrscr();

printf(“\n Enter the number of elements in the array :

scanf("%d", &n);

for(i=0;i<n;i++)

{
printf("\n arr[%d] = ", 1);
scanf(“%d",&arr[i]);

}

for(i=0;i<n;i++)
sum += arr[i];

mean = (float)sum/n;

printf(“\n The sum of the array elements = %d", sum);

")

printf(“\n The mean of the array elements = %.2f", mean);

return 0;

Enter the number of elements in the array : 5

arr[0]
arr[1]
arr[2]
arr[3]
arr[4]

Bow op e

5

The sum of the array elements = 15
The mean of the array elements = 3.00

Wl ogleoll Asidi Asls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll
Sheet 2 elyoll + by9ull e 2l + Bpolaoll yadlo : Wlogleoll yaa0

F

3. Write a program to print the position of the smallest number of #» numbers using arrays.

#include <stdio.h>
#include <conio.h>
int main()

{

int i, n, arr[20], small, pos;
clrscr();
printf("\n Enter the number of elements in the array : ");
scanf("%d", &n);
printf(“\n Enter the elements : ");
for(i=0;i<n;i++)

scanf("%d",&arr[i]);
small = arr[0]
pos =0;
for(i=1;i<n;i++)
{

if(arr[i]<small)

{

small = arr[i];
pos = i;

}
}
printf(“\n The smallest element is : %¥d", small);
printf(“\n The position of the smallest element in the array is : %d", pos);
return 0;

}
Output

Enter the number of elements in the array : 5

Enter the elements : 7 6 5 14 3

The smallest element is : 3
The position of the smallest element in the array is : 4

2.5.2 Inserting an Element in an Array

If an element has to be inserted at the end of an existing array, then the task of insertion is quite simple.
We just have to add 1 to the upper_ bound and assign the value. Here, we assume that the memory
space allocated for the array is still available. For example, if an array is declared to contain 10 elements,
but currently it has only 8 elements, then obviously there is space to accommodate two more elements.
But if it already has 10 elements, then we will not be able to add another element to it.

Step 1: Set upper_bound = upper_bound + 1
Step 2: Set A[upper_bound] = VAL
Step 3: EXIT

Figure 2.13: Algorithm to append a new element to an existing array.

Glogleoll Ayidli Auls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll
Sheet 2 eloll + B9ull e 2 uill + §polaoll yailo : Wilogleoll ;a0

Figure 2.13 shows an algorithm to insert a new element to the end of an array. In Step 1, we increment
the value of the upper_bound. In Step 2, the new value is stored at the position pointed by the
upper_bound. For example, let us assume an array has been declared as

int marks[60];

The array is declared to store the marks of all the students in a class. Now, suppose there are 54
students and a new student comes and is asked to take the same test. The marks of this new student
would be stored in marks[55]. Assuming that the student secured 68 marks, we will assign the value as

marks[55] = 68;

e Algorithm to Insert an Element in the Middle of an Array

The algorithm INSERT will be declared as INSERT (A, N, POS, VAL). The arguments are:

a) A, the array in which the element has to be inserted.

b) N, the number of elements in the array.

c) POS, the position at which the element has to be inserted.
d) VAL, the value that has to be inserted.

Step 1: [INITIALIZATION] SET I = N
Step 2: Repeat Steps 3 and 4 while I >= POS
Step 3: SET A[I + 1] = A[I]
Step 4: SETI =1I-1
[END OF LOOP]
Step 5: SET N =N+ 1
Step 6: SET A[POS] = VAL
Step 7¢ EXTT

Figure 2.14: Algorithm to insert an element in the middle of an array.

In the algorithm given in Fig. 2.14, in Step 1, we first initialize | with the total number of elements in the
array. In Step 2, a while loop is executed which will move all the elements having an index greater than
POS one position towards right to create space for the new element. In Step 5, we increment the total
number of elements in the array by 1 and finally in Step 6, the new value is inserted at the desired
position.

Now, let us visualize this algorithm by taking an example.

10

©logleoll Ayl Ayl

Sheet 2

ITGS220 : o)l jo, Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll

gloll + Bl Jle 2yl + Bpolaoll paily : Slogleoll ,ua0

Initial pata[] is given as below.

Data[0] Data[l1] Data[2] Data[3] Data[4] Data[5]

Calling INSERT (Data, 6, 3, 100) will lead to the following processing in the array:

| 45 | 2 34 12 56 20 | 20 |
Data[0] Data[l] Data[2] Data[3] Data[4] Data[5] Data[6]

| 45 | 2 34 12 56 s6 | 20 |
Data[0] Data[l] Data[2] Data[3] Data[4] Data[5] Data[6]

| 45 | 2 34 12 12 s6 | 20 |
Data[0] Data[l] Data[2] Data[3] Data[4] Data[5] Data[6]

| 45 23 34 100 12 56 20 |
Data[0] Data[l] Data[2] Data[3] Data[4] Data[5] Data[6]

Programming Examples:

Write a program to insert a number at a given location in an array.

#include <stdio.h>

#include <conio.h>
int main()
{
int i, n, num, pos, arr[10];
clrscr();
printf("\n Enter the number of elements in the array : ");
scanf("%d", &n);
for(i=0;i<n;i++)
{
printf("\n arr[¥%d] = ", 1i);
scanf("%d", &arr[i]);
}
printf("\n Enter the number to be inserted : ");
scanf("%d", &num);
printf(“\n Enter the position at which the number has to be added :");
scanf("%d", &pos);
for(i=n-1;i»>=pos;i--)
arr[i+l] = arr[i];
arr[pos] = num;
n = n+l;
printf("\n The array after insertion of %d is :
for(i=0;i<n;i++)
printf(“\n arr[%d] = %d", i, arr[i]);
getch();
return 0;

5 num);

Wl ogleoll Asidi Asls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll
Sheet 2 elyoll + by9ull e 2l + Bpolaoll yadlo : Wlogleoll yaa0

Output

Enter the number of elements in the array : 5
arr[0]
arr[1]
arr[2]
arr[3]
arr[4]
Enter the number to be inserted : O

Enter the position at which the number has to be added : 3
The array after insertion of 0 is :

arr[0]
arr[1]
arr[2]
arr[3]
arr[4]
arr[5]

non
(7 I R VY Iy Ry

VB O WM

2.5.3 Deleting an Element from an Array

Deleting an element from an array means removing a data element from an already existing array. If the
element has to be deleted from the end of the existing array, then the task of deletion is quite simple.
We just have to subtract 1 from the upper_bound. Figure 3.15 shows an algorithm to delete an element
from the end of an array.

Step 1: SET upper bound = upper bound - 1
Step 2: EXIT

Figure 2.15: Algorithm to delete the last element of an array.

The array is declared to store the marks of all the students in the class. Now, suppose there are 54
students and the student with roll number 54 leaves the course. The score of this student was stored in
marks[54]. We just have to decrement the upper_bound. Subtracting 1 from the upper_bound will
indicate that there are 53 valid data in the array.

12

Wl ogleoll Asidi Asls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll
Sheet 2 elyoll + by9ull e 2l + Bpolaoll yadlo : Wlogleoll yaa0

e Algorithm to delete an element from the middle of an array

The algorithm DELETE will be declared as DELETE(A, N, POS). The arguments are:

a) A, the array from which the element has to be deleted.
b) N, the number of elements in the array.
c) POS, the position from which the element has to be deleted.

Step 1: [INITIALIZATION] SET I = POS
Step 2: Repeat Steps 3 and 4 while I ¢=N - 1
Sfep 3! SFT A[T] = A[T + 1]
Step 4: SETI=I+1
[END OF LOOF]
Step 5: SETN =N -1
Step 6: EXIT

Figure 2.16: Algorithm to delete an element from the middle of an array.

Figure 2.16 shows the algorithm in which we first initialize | with the position from which the element
has to be deleted. In Step 2, a while loop is executed which will move all the elements having an index
greater than POS one space towards left to occupy the space vacated by the deleted element. When we
say that we are deleting an element, actually we are overwriting the element with the value of its
successive element. In Step 5, we decrement the total number of elements in the array by 1.

45 23 34 12 56 20
Data[0] Data[l1l] Data[2] Data[3] Data[4] Data[5]

45 23 12 12 56 20
Data[0] Data[l1l] Data[2] Data[3] Data[4] Data[5]

45 23 12 56 56 20
Data[0] Data[1] Data[2] Data[3] Data[4] Data[5]

45 23 12 56 20 20
Data[0] Data[l] Data[2] Data[3] Data[4] Data[5]

45 23 12 56 20
Data[0] Data[l] Data[2] Data[3] Data[4]

13

Glogleoll Ayidli Auls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll

Sheet 2

> waoll gaua clég i : polaoll
o)l + 8,9uil le 2yl + §plaoll yadlo : Wlogleoll ;aa0

Programming Examples:

9. Write a program to delete a number from a given location in an array.

#include
#include

<stdio.h>
<conio.h>

int main()

{

}
Output

int i, n, pos, arr[10];
clrscr();
printf("\n Enter the number of elements in the array : ");
scanf("%d", &n);
for(i=0;i<n;i++)
{
printf("“\n arr[%d] = ", i);
scanf("%d", &arr[i]);
}
printf("\nEnter the position from which the number has to be deleted : ");
scanf("%d", &pos);
for(i=pos; i<n-1;i++)
arr[i] = arr[i+l];
n--;
printf("\n The array after deletion is : ");
for(i=0;i<n;i++)
printf("\n arr[%d] = %d", i, arr[i]);
getch();
return 0;

Enter the number of elements in the array : 5

arr[0] =
arr[1]
arr[2]
arr[3]
arr[4] =

(T R TR N

Enter the position from which the number has to be deleted : 3
The array after deletion is :

arr[0] =
arr[1]
arr[2]
arr[3]

1
2
2
5

14

Wl ogleoll Asidi Asls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll
> waoll gaua clég i : polaoll
Sheet 2 elyoll + by9ull e 2l + Bpolaoll yadlo : Wlogleoll yaa0

2.5.4 Merging Two Arrays

Merging two arrays in a third array means first copying the contents of the first array into the third array
and then copying the contents of the second array into the third array. Hence, the merged array
contains the contents of the first array followed by the contents of the second array.

If the arrays are unsorted, then merging the arrays is very simple, as one just needs to copy the contents
of one array into another. But merging is not a trivial task when the two arrays are sorted and the
merged array also needs to be sorted. Let us first discuss the merge operation on unsorted arrays. This
operation is shown in Fig 3.17.

Aray1-| 90 | 56 | 89 | 77 | 69 |
Aray2-| 45 | 88 | 76 | 99 | 12 | 58 | 81 |
Amay3-| 90 | 56 | 89 | 77 | 69 | 45 | 88 | 76 | 99] 12 | 58 | 81 |

Figure 2.17: Merging of two unsorted arrays.

15

Glogleoll Ayidli Auls ITGS220 : ,,d0ll ;0, Data structure &bl «usSlyi : ,,d0ll

Sheet 2

> waoll gaua clég i : polaoll
o)l + 8,9uil le 2yl + §plaoll yadlo : Wlogleoll ;aa0

Programming Examples:

Write a program to merge two unsorted arrays.

#include <stdio.h>
#include <conio.h>

int main()

{

int arrl[10], arr2[10], arr3[20];
int i, nl, n2, m, index=0;
clrsce();
printf{"\n Enter the number of elements in arrayl : "};
scanf("%d", &nl);
printf{"\n\n Enter the elements of the first array");
for{i=0;icni;i++)
{
printf{"\n arri[¥d] = ", i);
scanf("¥d", &arrl[i]);
}
printf{"\n Enter the number of elements in array2 : ");
scanf("%d", &nl);
printf{"\n\n Enter the elements of the second array");
for{i=0;icn2;i++)
i
printf{"\n arr2[¥d] = ", i);
scanf("¥d", &arr2[i]);
}
m = nl+n2;
for{i=0;icni;i++)
{
arr3[index] = arrl[i];
index++;
}
for{i=0;icn2;i++)
{
arri[index] = arr2[i];
index++;
}
printf{"\nyn The merged array is"};
for{i=0;icm;i++)
printf{"\n arr[Zd] = ¥d", i, arri[i]);
getch();
return 0;

16

©logleoll Ayl Ayl

ITGS220 : o)l jo, Data structure &bl «usSlyi : ,,d0ll

> waoll gaua clég i : polaoll

Sheet 2 ealoll + Bl e 2yl + Bpoboll yadlo : logleoll ja0
Output
Enter the number of elements in arrayl : 3
Enter the elements of the first array
arrl[0] =1
arrl[l] = 2
arrl[2] = 3
Enter the number of elements in array2 : 3
Enter the elements of the second array
arr2[0] = 4
arr2[1l] =5
arr2[2] = &
The merged array is
arr[0] =1
arr[l] = 2
arr[2] = 3
arr[3] = 4
arr[4] =5
arr[5] = 6

17

