
Network
Programming

Python Networking Overview02

University of Tripoli
Faculty of Information Technology
Department of Networking

Assistant Lecturer / Marwa Ebrahim Elwakedy

What is Network Programming?

Send/receive data across a network

 Provide/invoke services over a network

 Mobile computing through wireless networks

 Cloud/edge computing

◼ Network programs: Programs that use network in some way to do their work.

◼Network programming is the discipline of designing and implementing network

programs.

Python Networking Overview02

Python Networking

Network programming is a major use of Python.

Python standard library has wide support for network protocols, data

encoding/decoding, and other things you need to make it work.

Writing network programs in Python tends to be substantially easier than in

C/C++.

Python Networking Overview02

Python Networking Levels

connection-oriented

connectionless

 FTP, HTTP, POP3, SMTP, …

◼ Python provides two levels of access to network services.

◼ Low level: can access the basic socket support in the underlying OS

◼ High level (protocol level): libraries for various application level network

protocols

Python Networking Overview02

The Problem

◼Communication between computers

NETWORK

◼It’s just sending/receiving bits

Python Networking Overview02

Three Main Issues:

 Specifying a remote computer and service

◼ Addressing

Moving data(bits) back and forth

◼ Data transport

 Conversation in proper order

 Understand each other

◼ Meaningful conversation

Python Networking Overview02

Networking Address:

 Specifying a remote computer and service

◼ Addressing

Foo.Bar.com

WWW.EXAMPLE.COM
205.172.13.4

42.92.237.218

port: 80
NETWORK

port: 1234

Python Networking Overview02

Standard Ports:

◼ Ports for common services are preassigned

◼ Other port numbers may just be randomly assigned to programs by the OS

21 FTP
22 SSH
23 Telnet
25 SMTP (Mail)
80 HTTP (Web) 1
10 POP3 (Mail)
119 NNTP (News)
443 HTTPS (web)

Python Networking Overview02

Using netstat

◼ Use 'netstat' to view active network connections

◼ Note: Must execute from the command shell on both Unix and Windows

shell % netstat -a
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 *:imaps *:* LISTEN
tcp 0 0 *:pop3s *:* LISTEN
tcp 0 0 localhost:mysql *:* LISTEN
tcp 0 0 *:pop3 *:* LISTEN
tcp 0 0 *:imap2 *:* LISTEN
tcp 0 0 *:8880 *:* LISTEN
tcp 0 0 *:www *:* LISTEN

Python Networking Overview02

Connections:

◼ Each endpoint of a network connection is always represented by a host and

port #

◼ In Python you write it out as a tuple (host, port)

◼ In almost all of the network programs you’ll write, you use this convention to

specify a network address

("www.python.org", 80)

 "205.172.13.4", 443)

Python Networking Overview02

Clients

browser Web

Server

macbooks-air.64568

WWW.EXAMPLE.COM
205.172.13.4

42.92.237.218

port: 80

Client/Server Concept:
◼ Each endpoint is a running program
◼Servers wait for incoming connections and provide a service (e.g., web, mail,

etc.)
◼ Clients make connections to servers

NETWORK
port: 1234

Python Networking Overview02

Request/Response Cycle

import requests

def request_response(url):

 response = requests.get(url)

 status_code = response.status_code

 print("Status code:", status_code)

 if status_code == 200:

 content = response.content

 print("Content:", content)

 else: print("Error:", response.reason)

if __name__ == "__main__":

 url = "https://www.google.com"

 request_response(url)

Python Networking Overview02

Request/Response Cycle

import requests

Python Networking Overview02

◼ The first line imports the requests library. This library provides a simple and
easy-to-use interface for making HTTP requests.

◼ The request_response() function takes a URL as input and makes a GET
request to that URL. The function returns a Response object, which contains
information about the response, such as the status code, the content, and the
headers

◼ The requests.get() method makes a GET request to the specified URL and
returns a Response object.

def request_response(url):

response = requests.get(url)

Request/Response Cycle

 status_code = response.status_code

Python Networking Overview02

◼ The status_code attribute of the Response object contains the status code of
the response. The status code is an integer that indicates the success or failure
of the request.

◼ The print() statement prints the status code of the response.

◼ The if statement checks if the status code is 200. The status code 200
indicates that the request was successful.

print("Status code:", status_code)

 if status_code == 200:

Request/Response Cycle

content = response.content

Python Networking Overview02

◼ The content attribute of the Response object contains the content of the
response. The content is the data that was returned by the server in response to
the request.

◼ The print() statement prints the content of the response.

◼ The else block is executed if the status code is not 200.

 print("Content:", content)

 else: print("Error:", response.reason)

Request/Response Cycle

print("Error:", response.reason)

Python Networking Overview02

◼ The print() statement prints the reason for the error. The reason is a string that
describes the error that occurred.

◼ The if __name__ == "__main__": block is executed if the script is run as the
main program. The url variable is set to the URL of the Google website. The
request_response() function is called with the url variable as input.

if __name__ == "__main__":

 url = "https://www.google.com"

 request_response(url)

Request/Response Cycle
◼ Most network programs use a request/response model based on messages.

◼ Client sends a request message (e.g., HTTP)

◼ Server sends back a response message

◼ The exact format depends on the application

GET /index.html HTTP/1.0

HTTP/1.0 200 OK Content-

type: text/html Content-

length: 48823 ...

Python Networking Overview02

shell % telnet www.python.org 80

Trying 82.94.237.218...

Connected to www.python.org. Escape

character is '^]'.

GET /index.html HTTP/1.0
Type this and press

return a few times

Using Telnet:
◼ As a debugging aid, telnet can be used to directly communicate with many

services

◼ Example:

telnet hostname portnum

HTTP/1.1 200 OK
Date: Mon, 31 Mar 2008 13:34:03 GMT Server:
Apache/2.2.3 (Debian) DAV/2 SVN/1.4.2
mod_ssl/2.2.3 OpenSSL/0.9.8c

Python Networking Overview02

Data Transport

◼ There are two basic types of communication

◼ Streams (TCP): Computers establish a connection with each other and

read/write data in a continuous stream of bytes---like a file. This is the most

common.

◼ Datagrams (UDP): Computers send discrete packets (or messages) to each

other. Each packet contains a collection of bytes, but each packet is separate

and self-contained.

Python Networking Overview02

NETWORK

socket Socket

Sockets:

◼ Programming abstraction for network code

◼ Socket: A communication endpoint

◼ Supported by socket library module.

◼ Allows connections to be made and data to be transmitted in either direction

Python Networking Overview02

Python Socket Support

◼ Python supports socket networking through the socket module.

◼ The module provides the BSD socket interface.

◼ The socket() function create socket objects.

◼ Various functions(gethostbyname(), gethostbyaddr() …) to get commn related

info.

◼ The send()/recv() function send/receive data through the socket.

Python Networking Overview02

Python Socket Support

import socket

def print_machine_info():

 host_name = socket.gethostname()

 ip_address = socket.gethostbyname('localhost')

 print ("Host name: %s" %host_name)

 print ("IP address: %s" %ip_address)

if __name__ == '__main__':

 print_machine_info()

Python Networking Overview02

Protocols

◼ Send/receive data back and forth is meaningless if we can’t understand each

other.
◼ To conduct meaningful conversation:

◼ This is done through protocols.

◼ Python offers protocol modules for many networking tasks/applications.

 Follow agreed upon rules of message exchange

 Provide data in proper format

Python Networking Overview02

Finding service name

Python Networking Overview02

import socket

def find_service_name():

 protocolname = 'tcp'

 for port in [80, 25]:

 print ("Port: %s => service name: %s" %(port,

socket.getservbyport(port, protocolname)))

 print ("Port: %s => service name: %s" %(53,

socket.getservbyport(53, 'udp')))

if __name__ == '__main__':

 find_service_name()

Conclusion

◼ Python networking support is rich and friendly.

◼ Use socket programming for low-level or short/simple message exchange.

◼ Use TCP/UDP for normal client-server programming.

◼ Use application protocol modules for corresponding services.

Python Networking Overview02

