02 Python Networking Overview

NETWORK
PROGRAMMING

University of Tripoli
Faculty of Information Technology
Department of Networking p g O n

Assistant Lecturer / Marwa Ebrahim Elwakedy

What is Network Programming?

B Network programs: Programs that use network in some way to do their work.
e Send/receive data across a network
e Provide/invoke services over a network
e Mobile computing through wireless networks

e Cloud/edge computing

mNetwork programming is the discipline of designhing and implementing network

programs.

Python Networking Overview

Python Networking

e Network programming is a major use of Python.

e Python standard library has wide support for network protocols, data
encoding/decoding, and other things you need to make it work.

o Writing network programs in Python tends to be substantially easier than in

C/C++.

Python Networking Overview

Python Networking Levels

B Python provides two levels of access to network services.
B Low level: can access the basic socket support in the underlying OS
e connhection-oriented
e connectionless
m High level (protocol level): libraries for various application level network
protocols

e FTP, HTTP, POP3, SMTP, ..

Python Networking Overview

The Problem

mECommunication between computers

mit's just sending/receiving bits

02 Python Networking Overview

Three Main Issues:

B Addressing

e Specifying a remote computer and service

B Data transport
e Moving data(bits) back and forth

B Meaningful conversation
e Conversation in proper order

e Understand each other

Python Networking Overview

Networking Address:

B Addressing

e Specifying a remote computer and service

Foo.Bar.com

205.17213.4
port: 1234 WWW.EXAMPLE.COM
42.92.237.218
port: 80
"
jf’ >

S RVS
0”0’0‘.0’
@
—

02 Python Networking Overview

Standard Ports:

B Ports for common services are preassighed

21 FTP

22 SSH

23 Telnet

25 SMTP (Mail)
80 HTTP (Web) 1
10 POP3 (Mail)
119 NNTP (News)
443 HTTPS (web)

B Other port numbers may just be randomly assigned to programs by the OS

Python Networking Overview

Using netstat

B Use 'netstat' to view active network connections

shell % netstat -a

Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp O O *:imaps *:* LISTEN

tcp O O *:pop3s *:* LISTEN

tcp O O localhost:mysqgl ** LISTEN

tcp O O *:pop3 ** LISTEN

tcp O O :imap2 ** LISTEN

tcp O O 8880 ** LISTEN

tcp O O *www ** LISTEN

B Note: Must execute from the command shell on both Unix and Windows

Python Networking Overview

Connections:

B Each endpoint of a network connection is always represented by a host and

port

B In Python you write it out as a tuple (host, port)

("www.python.org", 80)
"205.172.13.4", 443)

B In almost all of the network programs you’ll write, you use this convention to

specify a network address

Python Networking Overview

Client/Server Concept:

B Each endpoint is a running program

mServers wait for incoming connections and provide a service (e.g., web, mail,

etc.)
B Clients make connections to servers

Clients

Mmacbooks-air.64568 SNSRI,

205.172.13.4
Server WWW.EXAMPLE.COM
port: 1234
42.92.237.218
7
browser | _ > Web | ot 80

Python Networking Overview

Request/Response Cycle

1mport requests

def request_response(url):

11

__name__ == " _ main__

response = requests.get(url)
status_code = response.status_code
print("Status code:", status_code)
1f status_code == 200:
content = response.content
print("Content:", content)
else: print("Error:", response.reason)

url = "https://www.google.com"
request_response(url)

Python Networking Overview

Request/Response Cycle

B The first line imports the requests library. This library provides a simple and
easy-to-use interface for making HTTP requests.

1mport requests

B The request response() function takes a URL as input and makes a GET
request to that URL. The function returns a Response object, which contains
iInformation about the response, such as the status code, the content, and the
headers

def request_response(url):

B The requests.get() method makes a GET request to the specified URL and
returns a Response object.

response = requests.get(url)

Python Networking Overview

Request/Response Cycle

B The status_code attribute of the Response object contains the status code of
the response. The status code is an integer that indicates the success or failure

of the request.

status_code response.status_code

B The print() statement prints the status code of the response.
print("Status code:", status_code)

B The if statement checks if the status code is 200. The status code 200
iIndicates that the request was successful.

1f status _code == 200:

Python Networking Overview

Request/Response Cycle

B The content attribute of the Response object contains the content of the
response. The content is the data that was returned by the server in response to

the request.

content = response.content
B The print() statement prints the content of the response.
print("Content:", content)
B The else block is executed if the status code is not 200.

else: print("Error:", response.reason)

Python Networking Overview

Request/Response Cycle

B The print() statement prints the reason for the error. The reason is a string that
describes the error that occurred.

print("Error:", response.reason)

mTheif name_ =" main__ ": block is executed if the script is run as the
main program. The url variable is set to the URL of the Google website. The
request response() function is called with the url variable as input.

1f __name__ == "__main__":
url = "https://www.google.com"
request_response(url)

Python Networking Overview

Request/Response Cycle

B Most network programs use a request/response model based on messages.

m Client sends a request message (e.g., HTTP)

GET /index.html HTTP/1.0

B Server sends back a response message

HTTP/1.0 200 OK Content-
type: text/html Content-
length: 48823 ...

B The exact format depends on the application

Python Networking Overview

Using Telnet:
B As a debugging aid, telnet can be used to directly communicate with many

services

telnet hosthame portnum

B Example:

shell % telnet www.python.org 80
Trying 82.94.237.218. ..

Connected to www.python.org. Escape
character is '~]'.

GET /index.html HTTP/1.09 <

HTTP/1 .1 200 OK

Date: Mon, 31 Mar 2008 13:34:03 GMT Server:
Apache/2.2.3 (Debian) DAV/2 SVN/1.4.2
mod_ssl/2.2.3 OpenSSL/0.9.8c

Python Networking Overview

Data Transport

B There are two basic types of communication

B Streams (TCP): Computers establish a connection with each other and

read/write data in a continuous stream of bytes---like a file. This is the most

common.

m Datagrams (UDP): Computers send discrete packets (or messages) to each

other. Each packet contains a collection of bytes, but each packet is separate

and self-contained.

Python Networking Overview

Sockets:

B Programming abstraction for network code

B Socket: A communication endpoint

Socket
> ©

NETWORK

B Supported by socket library module.

B Allows connections to be made and data to be transmitted in either direction

Python Networking Overview

Python Socket Support

B Python supports socket networking through the socket module.

B The module provides the BSD socket interface.
B The socket() function create socket objects.
m Various functions(gethostbyname(), gethostbyaddr() ...) to get commn related

info.

B The send()/recv() function send/receive data through the socket.

Python Networking Overview

Python Socket Support

1mport socket

def print_machine_info():
host_name = socket.gethostname()
ip_address = socket.gethostbyname('localhost')
print ("Host name: %s" %host_name)
print ("IP address: %s" %ip_address)

1f _ name_ == '_ main__

print_machine_info()

Python Networking Overview

Protocols

B Send/receive data back and forth is meaningless if we can’'t understand each

other.
B To conduct meaningful conversation:

e Follow agreed upon rules of message exchange

e Provide data in proper format
M This is done through protocols.

m Python offers protocol modules for many networking tasks/applications.

Python Networking Overview

Finding service name

1mport socket

def find_service_name():

protocolname = 'tcp’

for port in [80, 25]:

print ("Port: %s => service name: %s" %(port,
socket .getservbyport(port, protocolname)))

print ("Port: %s => service name: %s" %(53,
socket.getservbyport(53, 'udp')))

1f _ name__ == '_main__

find_service_name()

Python Networking Overview

Conclusion

B Python networking support is rich and friendly.

B Use socket programming for low-level or short/simple message exchange.

B Use TCP/UDP for normal client-server programming.

B Use application protocol modules for corresponding services.

Python Networking Overview

