
MySQL,
The Comprehensive Course

الدورة الشاملة

إعداد وتقديم: د. عبدالناصر ضياف

الاستعلامات الفرعية
Sub-queries

08

نتعرف هنا على●
●

●

●

 A subquery is a query that is nested inside a
SELECT, INSERT, UPDATE, or DELETE statement,
or inside another subquery.

 A subquery can be used anywhere an expression is
allowed.

 Use a subquery to return only a SINGLE value in
SELECT clause (direct or indirect)

Bordoloi and Bock

SUBQUERY

SELECT emp_last_name "Last Name", emp_first_name
"First Name",

 emp_salary "Salary"
FROM employee
WHERE emp_salary =
 (SELECT MIN(emp_salary)
 FROM employee);

Last Name First Name Salary
--------------- --------------- -----
Markis Marcia $25,000
Amin Hyder $25,000
Prescott Sherri $25,000

Bordoloi and Bock

Example

قائمة الموظفين ذوي أقل دخل

 There are three basic types of subqueries:

1. A subquery that returns only a single scalar value such as a row

attribute or an aggregate function to be used as a row attribute or

in the WHERE clause with a comparison operator in its outer query.

2. A subquery that returns a list of single values (a column-like) to be

used by the IN or EXISTS operators in its outer query.

3. A subquery that returns a list of multiple values (a table-like) to be

used by the EXISTS operator in its outer query, because EXISTS

deals with rows instead of columns.

Bordoloi and Bock

SUBQUERY TYPES

 A subquery SELECT statement is very similar to the SELECT statement
used to begin a regular query.

 A subquery nested in the outer SELECT statement has the following
components:
◦ A regular SELECT query including the regular select list components.
◦ A regular FROM clause including one or more table or view names.
◦ An optional WHERE clause.
◦ An optional GROUP BY clause.
◦ An optional HAVING clause.

 The subquery is always enclosed in parentheses.
 It may only include an ORDER BY clause when a LIMIT clause is also specified.

Bordoloi and Bock

SUBQUERY – General Rules

 Subqueries that are introduced with the
keyword IN take the general form:

◦ WHERE expression [NOT] IN (subquery)

Bordoloi and Bock

SUBQUERIES AND THE IN Operator

SELECT emp_last_name "Last Name",
 emp_first_name "First Name"
FROM employee
WHERE emp_nid IN
 (SELECT dep_emp_nid
 FROM dependent
 WHERE dep_gender = 'M');

Last Name First Name
--------------- ---------------
Bock Douglas
Zhu Waiman
Joyner Suzanne

Bordoloi and Bock

Example الموظفين الذين لديهم أولاد ذكور

 Conceptually, this statement is evaluated in two steps.
 First, the inner query returns the identification

numbers of those employees that have male
dependents.

SELECT dep_emp_nid
FROM dependent
WHERE dep_gender = 'M';

DEP_EMP_NID

999444444
999555555
999111111

Bordoloi and Bock

SUBQUERIES AND THE IN Operator

 Next, these national identification number values are
substituted into the outer query as the listing that is the
object of the IN operator. So, from a conceptual
perspective, the outer query now looks like the following:
SELECT emp_last_name "Last Name",
emp_first_name "First Name"
FROM employee
WHERE emp_nid IN (999444444, 999555555, 999111111);

Last Name First Name

Joyner Suzanne
Zhu Waiman
Bock Douglas

Bordoloi and Bock

SUBQUERIES AND THE IN Operator

 Unlike the IN operator which take FALSE in the beginning and
compares each row-value against the given key and returns TRUE
once matched, the NOT IN operator takes TRUE in the beginning and
returns FALSE once the key is matched.

SELECT id, name
FROM student
WHERE status=‘active’ AND
 id NOT IN
 (SELECT student_id FROM grade WHERE status=‘in-progress’);

Id Name

2013005 Amin
2014112 Zainab
2014217 Hyder

Bordoloi and Bock

The NOT IN Operator

قائمة الطلاب الذين لم ينزّ�لو موادهم

 Subqueries may themselves contain
subqueries.

 When the WHERE clause of a subquery has
as its object another subquery, these are
termed nested subqueries.

 Most of RDBMSs places no practical limit
on the number of queries that can be
nested in a WHERE clause.

Bordoloi and Bock

MULTIPLE LEVELS OF NESTING

 Consider the problem of producing a listing of employees that worked more than 10
hours on the project named HighWay-401:

SELECT full_name ‘Full Name’

FROM employee

WHERE emp_nid IN
 (SELECT work_emp_nid

 FROM assignment

 WHERE work_hours>10 AND work_proj_number IN

 (SELECT proj_number

 FROM project

 WHERE proj_name = ‘HighWay-401 '));

Full Name

Bock Douglas
Prescott Sherri

Bordoloi and Bock

Example

 In order to understand how this query
executes, we need to execute each query
independently starting with the most
inner subquery.

Bordoloi and Bock

Understanding SUBQUERIES

 The general form of the WHERE clause
with a comparison operator is similar to
that used thus far in the text.

 Note that the subquery is again enclosed
by parentheses.

WHERE <expression> <comparison_operator>
(subquery)

Bordoloi and Bock

SUBQUERIES AND COMPARISON OPERATORS

 The most important point to remember when using a
subquery with a comparison operator is that the
subquery can only return a single or scalar value.

 This is also termed a scalar subquery because an
aggregate function value or a single column of a single
row is returned by the subquery.

 If a subquery returns more than one value, the RDBMS
will generate an error message, and the query will fail to
execute.

Bordoloi and Bock

SUBQUERIES AND COMPARISON OPERATORS

 Let's examine a subquery that will not execute
because it violates the "single value" rule.

 The subquery shown below returns multiple
values for the emp_salary column.

SELECT emp_nid
FROM employee

WHERE emp_salary >
 (SELECT emp_salary
 FROM employee

 WHERE emp_salary > 40000);

#1242 - Subquery returns more than 1 row (in MySQL) Bordoloi and Bock

SUBQUERIES AND COMPARISON OPERATORS

 The aggregate functions (AVG, SUM, MAX, MIN, and COUNT) always return
a scalar result table.

SELECT emp_last_name "Last Name",
 emp_first_name "First Name",
 emp_salary "Salary"
FROM employee
WHERE emp_salary >

 (SELECT AVG(emp_salary)
 FROM employee);

Last Name First Name Salary
--------------- --------------- ----------
Bordoloi Bijoy $55,000
Joyner Suzanne $43,000
Zhu Waiman $43,000
Joshi Dinesh $38,000

Bordoloi and Bock

Aggregate Functions and Comparison Operators

• The ALL and ANY keywords can modify a
comparison operator to allow an outer query to
accept multiple values from a subquery.

• The general form of the WHERE clause for this
type of query is shown here.

WHERE <expression> <comparison_operator>
[ALL | ANY] (subquery)

• Subqueries that use these keywords may also
include GROUP BY and HAVING clauses.

Bordoloi and Bock

Comparison Operators Modified with the ALL or ANY Keywords

• The ALL keyword modifies the greater than comparison
operator to mean greater than all values.

SELECT emp_last_name "Last Name",
 emp_first_name "First Name",
 emp_salary "Salary"
FROM employee
WHERE emp_salary > ALL
 (SELECT emp_salary

 FROM employee
 WHERE emp_dpt_number = 7);

Last Name First Name Salary
--------------- --------------- --------
Bordoloi Bijoy $55,000

Bordoloi and Bock

The ALL Keyword

• The ANY keyword is not as restrictive as the ALL
keyword.

• When used with the greater than comparison
operator, "> ANY" means greater than some
value.

Bordoloi and Bock

The ANY Keyword

SELECT emp_last_name "Last Name",
 emp_first_name "First Name",
 emp_salary "Salary"
FROM employee
WHERE emp_salary > ANY
 (SELECT emp_salary

 FROM employee
 WHERE emp_salary > 30000);

Last Name First Name Salary
--------------- --------------- --------
Bordoloi Bijoy $55,000
Joyner Suzanne $43,000
Zhu Waiman $43,000

Bordoloi and Bock

Example

 The "= ANY" operator is exactly equivalent to the IN operator.
 For example, to find the names of employees that have male

dependents, you can use either IN or "= ANY" – both of the queries
shown below will produce an identical result table.

SELECT emp_last_name "Last Name", emp_first_name "First Name"
FROM employee
WHERE emp_ssn IN
 (SELECT dep_emp_ssn
 FROM dependent
 WHERE dep_gender = 'M');

SELECT emp_last_name "Last Name", emp_first_name "First Name"
FROM employee
WHERE emp_ssn = ANY
 (SELECT dep_emp_ssn
 FROM dependent
 WHERE dep_gender = 'M');

Bordoloi and Bock

An "= ANY" (Equal Any) Example

 OUTPUT

Last Name First Name
--------------- ---------------
Bock Douglas
Zhu Waiman
Joyner Suzanne

Bordoloi and Bock

An "= ANY" (Equal Any) Example

 The "= ANY" is identical to the IN operator.
 However, the "!= ANY" (not equal any) is not equivalent

to the NOT IN operator.
 If a subquery of employee salaries produces an

intermediate result table with the salaries $38,000,
$43,000, and $55,000, then the WHERE clause shown
here means "NOT $38,000" AND "NOT $43,000" AND
"NOT $55,000".

WHERE NOT IN (38000, 43000, 55000);
 However, the "!= ANY" comparison operator and keyword

combination shown in this next WHERE clause means
"NOT $38,000" OR "NOT $43,000" OR "NOT $55,000".

Bordoloi and Bock

A "!= ANY" (Not Equal Any) Example

 A correlated subquery is one where the
inner query depends on values provided
by the outer query.

 This means the inner query is executed
repeatedly, once for each row that might
be selected by the outer query.

Bordoloi and Bock

CORRELATED SUBQUERIES

SELECT emp_last_name "Last Name",
 emp_first_name "First Name",
 emp_dpt_number "Dept",
 emp_salary "Salary"
FROM employee e1 WHERE emp_salary =
 (SELECT MAX(emp_salary)
 FROM employee
 WHERE emp_dpt_number =
e1.emp_dpt_number);

Bordoloi and Bock

CORRELATED SUBQUERIES

 Output

Last Name FirstName Dept Salary
---------- ---------- ----- --------
Bordoloi Bijoy 1 $55,000
Joyner Suzanne 3 $43,000
Zhu Waiman 7 $43,000

Bordoloi and Bock

CORRELATED SUBQUERIES

 The subquery in this SELECT statement cannot
be resolved independently of the main query.

 Notice that the outer query specifies that rows
are selected from the employee table with an
alias name of e1.

 The inner query compares the employee
department number column
(emp_dpt_number) of the employee table to
the same column for the alias table name e1.

Bordoloi and Bock

CORRELATED SUBQUERIES

 The value of e1.emp_dpt_number is treated
like a variable – it changes as the MySQL
server examines each row of the employee
table.

 The subquery's results are correlated with
each individual row of the main query –
thus, the term correlated subquery.

Bordoloi and Bock

CORRELATED SUBQUERIES

 When a subquery uses the EXISTS
operator, the subquery functions as an
existence test.

 The WHERE clause of the outer query
tests for the existence of rows
returned by the inner query.

 The subquery does not actually
produce any data; rather, it returns a
value of TRUE or FALSE.

Bordoloi and Bock

Subqueries and the EXISTS operator

 The general format of a subquery
WHERE clause with an EXISTS operator
is shown here.

 Note that the NOT operator can also
be used to negate the result of the
EXISTS operator.

WHERE [NOT] EXISTS (subquery)

Bordoloi and Bock

Subqueries and the EXISTS operator

SELECT emp_last_name "Last Name",
emp_first_name "First Name"

FROM employee
WHERE EXISTS
 (SELECT *
 FROM dependent
 WHERE employee.emp_ssn = dep_emp_ssn);

Last Name First Name
---------- ---------------
Joyner Suzanne
Zhu Waiman
Bock Douglas Bordoloi and Bock

Example

 Subqueries using an EXISTS operator are a bit
different from other subqueries, in the following
ways:

1. The keyword EXISTS is not preceded by a column
name, constant, or other expression.

2. The SELECT clause list of a subquery that uses
an EXISTS operator almost always consists of an
asterisk (*). This is because there is no real
point in listing column names since you are
simply testing for the existence of rows that
meet the conditions specified in the subquery.

Bordoloi and Bock

Subqueries and the EXISTS operator

3. The subquery evaluates to TRUE or
FALSE rather than returning any data.

4. A subquery that uses an EXISTS
operator will always be a correlated
subquery.

Bordoloi and Bock

Subqueries and the EXISTS operator

 The EXISTS operator is very
important, because there is often no
alternative to its use.

 All queries that use the IN operator or
a modified comparison operator (=,
<, >, etc. modified by ANY or ALL)
can be expressed with the EXISTS
operator.

 However, some queries formulated
with EXISTS cannot be expressed in
any other way! Bordoloi and Bock

Subqueries and the EXISTS operator

SELECT emp_last_name
FROM employee
WHERE emp_ssn = ANY
 (SELECT dep_emp_ssn
 FROM dependent);

EMP_LAST_NAME

Bock
Zhu
Joyner Bordoloi and Bock

Subqueries and the EXISTS operator
SELECT emp_last_name
FROM employee
WHERE EXISTS
 (SELECT *
 FROM dependent
 WHERE emp_ssn =

dep_emp_ssn);

EMP_LAST_NAME

Bock
Zhu
Joyner

 The NOT EXISTS operator is the mirror-
image of the EXISTS operator.

 A query that uses NOT EXISTS in the
WHERE clause is satisfied if the
subquery returns no rows.

Bordoloi and Bock

Subqueries and the EXISTS operator

 The SELECT statement shown below adds the ORDER BY
clause to specify sorting by first name within last name.

 Note that the ORDER BY clause is placed after the
WHERE clause, and that this includes the subquery as
part of the WHERE clause.
SELECT emp_last_name "Last Name",
 emp_first_name "First Name"
FROM employee
WHERE EXISTS
 (SELECT *
 FROM dependent
 WHERE emp_ssn = dep_emp_ssn)
ORDER BY emp_last_name, emp_first_name;

Bordoloi and Bock

Subqueries and the ORDER BY Clause

Output:

Last Name First Name
---------- ---------------
Bock Douglas
Joyner Suzanne
Zhu Waiman

Bordoloi and Bock

Subqueries and the ORDER BY Clause

	Slide 1
	تعريف المشروع
	SUBQUERY
	Example
	SUBQUERY TYPES
	SUBQUERY – General Rules
	SUBQUERIES AND THE IN Operator
	Example (2)
	SUBQUERIES AND THE IN Operator (2)
	SUBQUERIES AND THE IN Operator (3)
	The NOT IN Operator
	MULTIPLE LEVELS OF NESTING
	Example (3)
	Understanding SUBQUERIES
	SUBQUERIES AND COMPARISON OPERATORS
	SUBQUERIES AND COMPARISON OPERATORS (2)
	SUBQUERIES AND COMPARISON OPERATORS (3)
	Aggregate Functions and Comparison Operators
	Comparison Operators Modified with the ALL or ANY Keywords
	The ALL Keyword
	The ANY Keyword
	Example (4)
	An "= ANY" (Equal Any) Example
	An "= ANY" (Equal Any) Example (2)
	A "!= ANY" (Not Equal Any) Example
	CORRELATED SUBQUERIES
	CORRELATED SUBQUERIES (2)
	CORRELATED SUBQUERIES (3)
	CORRELATED SUBQUERIES (4)
	CORRELATED SUBQUERIES (5)
	Subqueries and the EXISTS operator
	Subqueries and the EXISTS operator (2)
	Example (5)
	Subqueries and the EXISTS operator (3)
	Subqueries and the EXISTS operator (4)
	Subqueries and the EXISTS operator (5)
	Subqueries and the EXISTS operator (6)
	Subqueries and the EXISTS operator (7)
	Subqueries and the ORDER BY Clause
	Subqueries and the ORDER BY Clause (2)

