
Modular Programming Versus Object Oriented Programming 

(The Good, The Bad and the Ugly) 

An Article Written by Stéphane Richard (Mystikshadows) 

INTRODUCTION: 

I'm sure some of your, by now, might be saying "what is that all about?". 
Allow me to begin this with a brief history of why I decided to write on this 
subject. You see, for decades already, when I hear talks about 
programming concepts and paradigms, It seems that Modular 
Programming techniques and object Oriented Programming have been 
under somekind of comparison by developers all around the world. A 
hidden feud between the two serving the soul purpose of boasting the 
advantages of one over the other. Also, It seems that with time, O.O.P. 
took on a very different role, one that radically changes the way 
newcomers to the world of development see and understand the concept. 
However, if you go on C forums, QB forums, and other languages too, 
and talk about O.O.P. you might be surprised at the answers you get from 
those communities. 

Basically, these two items are what motivated me to write about the 
subject in question. NOte that the contents of this document represent my 
own point of view, my personal understanding of the concepts and my 
thoughts on what should be what. But i have seen the evolution of 
Modular Programming and Object Oriented Programming from their very 
beginning, I've also seen all the deviation that these programming 
methods took in the course of their evolution. I will be explaining these 
methods and share my views and insight on where each method can 
provide the best advantages on a project. This will give you the 
information you need to understand the rest of the document where I will 
be sharing what has been said about these methods and show you where 
the deviations that was bestowed upon the O.O.P. paradigm changed 
everything that O.O.P. is known as today. 

WHAT IS MODULAR PROGRAMMING: 

Modular (or Procedural) programming is a coding method that entails 
the use of routines, sub routines and functions in order to organize and 
execute specific sets of instructions pertaining to a given task to be done. 
The main rule of thumb in this technique is that if a set of instructions, that 
perform a specific task or calculation, will be called several times, it should 



be moved to a subroutine (if it does not return a value) or a function (if it 
does return a value) and called from the needed other parts of the 
program. 

Typically, to create a successful modular structured approach to solve a 
problem, you need to define the problem in terms of what actions or 
calculations the program needs to do in order to perform the task defined 
in the problem. You also need to see if there is any special connection 
between procedures and functions to establish an execution order for 
them. The other concept here is that if a subroutine or a function is quite 
big, it is probably due for a refactoring into two or more sub routines. This 
is essentially how modular programming manages the complexity of a 
program by breaking it down into smaller, simpler, more managable 
sections of code. 

Over the years, structured programming has been given more than one 
coding style and as such gives a good foundation to adapt the 
programming method to fit one's minding. By that I mean that depending 
on a developer's background he or she might like to organize their 
modules, procedures and functions based on functional grouping (all 
string manipulation functions go in one module, all datatypes go in 
another module, all constants in yet another module, this is often the type 
of organization I like to follow as well. Others might prefer to organize their 
modular approach based on an entity structure (somewhat closer to 
O.O.P.). For example, all datatypes, procedures and functions that affect 
an employee's information goes in one module, all inventory datatypes 
and functionality goes in another module. This is one of the great 
advantages to the modular programming approach in that it allows to 
organize the code in a way that fits the developer's way of thinking. When 
you think about it, it can be a very strong point since everyone thinks in 
very different ways but everyone needs to be able to define their problem 
and bring solutions based on how they would solve them manually. 

WHAT IS OBJECT ORIENTED PROGRAMMING: 

Object Oriented Programming is a coding method that entails the use 
of objects and their relationships in order to describe, programmatically, 
the problem to be solved. The classic definition of O.O.P. was based on 
three founding pillars which were Encapsulation, Inheritance and 
Polymorphism. Here is a brief explanation of these founding blocks. 



 Encapsulation: 
This term defines the fact that both the data, and the functionaly that 
could affect or display that data are both included under a unified name 
(the object name itself). In the classic definition, the data elements (or 
properties of the object) are not available to the outside world directly. 
Instead, methods would be created to give access to these values 
outside of the object. Quickly, most languaged that supported Object 
Oriented Programming added the ability to declare properties as being 
public or private which took away from the original definition of keep that 

data private to the object only. 

 

 Inheritance: 
This feature allows developers to define objects in a hierarchy much like 
a taxonomy chart (like the animal kingdom classification chart). Each 
level of the hierarchy defines a more specific object than the parent 
level. Each level inherits all the properties and methods of it's parent 
object and at that point you define the more specific properties and 
methods need by the new level of object you created. 

 

 Polymorphism: 
This is a very fancy term to say that at any level of an object hierarchy 
each object could have a method of the same name and because of the 
level at which the method resides in, it could know which of the 
procedures or functions to call. Hence you could have a Shape object 
that has a Draw method. Then you could define a Circle, Square and 
Triangle object as Shape objects and override the Draw method to draw 
specifically a Circle, Square or Triangle method respectively. All 4 
objects would then have a Draw method but only the right method for 
the right object would be called. 

In the classic definition of O.O.P. These founding blocks were created 
because of the birth of a need for code reusability without simply cut and 
pasting existing code into a new module. Hence you could create an 
object or a hierarchy of objects that pertained to a specific role. then give 
the compiled version of that object as a library to another person who 
could then create his own objects as being part of the originally defined 
hierarchy. Today, two new pillars have been added to the definition of 
O.O.P. They are Interface and Abstraction. Here are their definitions. 



 Interface: 
This was added to O.O.P. in the goal to allow developers to provide an 
object template to control the access and definition of objects. An 
interface is simply a list of fixed method names that any object defined 
as being of this interface type must implement in order to be qualified as 
a valid object of the type the interface implies. This basically gave 
developers the ability to strictly control the naming conventions used in 
their objects as well as objects created by other developers designed to 
work in the current object model. 

 

 Abstraction: 
As popular as this term now is in the world of Object Oriented 
Programming, this essentially goes against all programming techniques. 
Abstraction is the ability to not need to pay attention to the type of 
objects that are bring used if the developer sees fit to do so. For 
example, a Dog could be treated as a dog probably most of the time, 
but of you have wolves, foxes and other similar dog like animals in your 
hierarchy, you could treat them all as Canidae class objects if you'd 
need to apply changes to all 3 animal types (provided these animals are 
of declared as Canidae type objects first. From Abstraction was born the 
need for the know infamous Variant datatype and the ability to declare 

variable as the ANY datatype. 

Essentially, O.O.P. is an evolving standard that adapts to new needed 
concepts as they are needed. This can be fun in some cases, but a real 
curse in most other cases. These last two pillars also created the concept 
of black box and white box programming techniques. The classic object 
was White box (which means that levels of the hierarchy needed to know 
what came at the parent level in order to be able to perform its task. In 
White Box development, a hierarchy defined levels of specializations of 
objects in a hierarchy where objects in a lower level had more refined 
programming compared to it's parent. In Black Box development, Each 
level of the hierarchy tends to define containment rather than refinement. 
For example: The white box would state that a dog is a specialized (or 
refined) type of Canidae. In Black box, a Canidae has a dog (and a wolf, 
and a fox as it's sub components. This can lead to some serious conflicts 
in my opinion, which i will share later in this document. For now, let's 
compare Modular Programming and Object Oriented Programming versus 
a typical problem scenario to get a glimpse of the real differences of both 
methods. 



METHOD APPROACH COMPARISON: 

The Scenario: 

The scenario I'll be using is the following. The boss comes to see you 
and asks you: "I would like a program that can save information on the 
employees to a file, I would like to be able to enter the Employee's ID, his 
name, address, city, state, zip code, telephone number, email and hourly 
rate and it should also be able to to retrieve that information based on one 
or more criteria that I would enter in different fields. I would like to print 
that information so I can put the employee information in a physical file. 
The employee should be able to to enter the time they arrive at, the time 
the leave and come back from lunch and the time they leave at the end of 
the day in a timesheet program. The program should be able to calculate 
how many hours they have worked that week, the gross pay they have 
gotten and the amount of overtime they worked (as well as what monetary 
value the overtime amounts to. Employees are paid 1 1/2 times their 
hourly rate for any hours over the regular 40 hours a week and they are 
paid twice their rate on any holiday. Everything should be saved and 
retrievable on a per employee basis. I also want weekly, monthly and 
yearly detailed and summary reports on all this information for all or one of 
the employees at a time." 

 

The Modular Programming Approach: 

In the modular programming approach, the verbs in the problem 
description are the ones considered first. Typically, these verbs represent 
the work to be done and therefore the likely subroutines that we would 
have to implement in order to solve the problem. The names in the 
description represent the information (variables and datatypes) that will 
will be acting on or producing at the end. Modular programming is based 
on three things, which are: 1. The information needed before the process 
can start, 2. The work to be done with that information and 3. The 
expected output of a procedure. We will here answer these questions as 
per our scenario above: 

 What Information Is Needed: 
By reading the problem description, we know already the information we 
need about the employee, so I won't define them here. However, we 
need to define the information about the timesheet itself. The timesheet 
should have the curent date, the start time, the lunch time start, the 



lunch time end, and the days end start. All this information should be 
linked with the employee itself by adding an EmployeeID field to our 
definition since each employee will be entering their own time. 

 

 What Is The work to be done with that information: 
Again based on the problem description, The program should allow us 
to enter and save employee information to a master employee file. It 
should also allow entering and saving of timesheet data into a timesheet 
database file. When needed, the system should allow to enter an 
employee ID or Name and show the user the week's total hours worked, 
gross earnings, the number of hours in overtime and the earnings from 
that as well. it should calculate the total hours and the total amount 
earned for that current week. The report should allow the user to specify 
a range of date for either a week, a month or the whole fiscal year and 
an optional employee ID to print out the payroll information for either the 

specified employee or all the employees (if none were entered). 

 

 What Is The Expected Output(s): 
The first out is the employee's information that needs to be printable on 
paper. it is mentionned and should be coded for. The other printable 
information that are stated are the weekly, monthly and yearly reports 
on one or all the employees. There is another piece of printed output 
that is understated here but not literally mentionned, the timesheets 
themselves. It makes sense to give an employee his weekly timesheet 
at the end of the week and/or for the employer to request an employee's 
timesheet at the end of the week. So we would typically implement a 

procedure to print timesheet information on request. 

As you can see, the modular approach is closely related to the 
functionality needed in the problem description. You think in terms of what 
needs to be done and usually can pretty quickly devise a workable 
complete solution to a problem by consecutively answering these three 
questions (some of these answer may require that you breakdown the 
system into smaller answers to a subset of these three question 
depending on how complex the system gets. This breaking down into 
smaller more specific procedures and functions is how Modular 
Programming offers to manage the complexity of a program. 



 

The Object Oriented Approach: 

In Object Oriented Programming, the names, not the verbs, are the first 
to be considered because in O.O.P. the first task is to define entities, not 
actions. O.O.P. starts by defining the players (or actors if you will) of a 
given scene (the problem) and them proceeds to defining how the actors 
are described (the properties) and what the actors can do (the methods). 
Once all these are defined for all playing actors, then the scene (the main 
part of the program controls what each players has and what it does. Only 
when you are defining the methods of the object can you actually start 
answering the same three questions that the modular approach lets you 
define right from the start. Again, as we did in the modular approach, I will 
define the same problem description using the Object Oriented 
Programming Approach instead of the Modular Approach I used 
previously: 

The Entities: 

By reading the problem description. We can clearly indentify three 
entities. The Employees, the Timesheet and the reporting system. This is 
how O.O.P. problem solving begins. You need to identify these entities 
first and the define how you describe the object as well as define what the 
object can do. So let's take each entity and define them so you can see 
how things work: 

 The Employee Entity: 
The Employee is the main actor of the scene. Every other entity in the 
model revolves around what the employee is and what it can do. In any 
object model you define, it's always important to identify this key player 
because it is at the center of any object relationships that can exist. 
Here are the defining attributes (properties) and Related Functionality 
(The Methods) of the Employee Entity. 

o Defining Attributes: 
As mentionned in the description, the Employee entity will need 
an EmployeeID, his name, address, city, state, zip code, 

telephone number, email and hourly rate attributes. 

 



o Related Functionality: 
The Employee needs to be able to do several things as far as it's 
defining attributes go as well as the ability to call the functionality 
of the other entities for timekeeping and and calculations. As 
such, the methods needed will be. EnterEmployee, 
SaveEmployee, LoadEmployee, FindEmployee and 

PrintEmployee. 

 

 The TimeSheet Entity: 
The TimeSheet Entity should be made to work a week based format 
where all the days are there so that it can be easy to get a quick 
overview of what the week is like currently. We will add a method to our 
object to make sure that an employee's weekly data is completely 
entered before we go ahead and print the timesheets just as a 
precaution because of the importance of the data that is being handled. 

o Defining Attributes: 
When you think of a timesheet, it doesn't take too long to 
determine the general information that you would need. The 
properties are: EmployeeID, DayOfWeek, DayDate, StartTime, 
LunchStartTime, LunchEndTime, EndOfDayTime. EmployeeID is 
needed to connect a timesheet record to an employee record in 
the master employee data file. The rest of the properties 

specifically relate to the TimeSheet Entity itself. 

 

o Related Functionality: 
As mentionned in the problem description, the TimeSheet entity 
will need to perform several types of actions. The names of the 
methods described here should help state clearly what the 
methods which helps make the object definition that much clearer. 
Asu such, here are these methods: GetTimeSheetData, 
SaveTimeSheetData, LoadTimeSheetData, PrintTimeSheetData, 
WeeklDataCompleted, PrintWeeklyTimeSheet, 
CalculateRegularHours, CalculateOverTimeHours, 
CalculateHolidayHours, CalculateRegularAmount, 

CalculateHolidayAmount 

 



 The ReportingSystem Entity: 
The ReportingSystem is present because on an entity based problem 
solving approach, every method needs to find it's place withing an 
object model. In most cases, printing related functionality is very often 
isolated into a seperate entity and sometimes even an independant 
application (so that it can be executed on a seperate system on the 
network and print the report while users can continue to do their other 
activities uninterrupted by the printing process). 

o Defining Attributes: 
Since the ReportingSystem entity creates no data files, all it 
needs is three attributes to perform it's task. These attributes are 
the EmployeeID, a StartDate and an EndDate properties so that it 
can accumulate all the TimeSheetRecords that fall between these 

two dates. 

 

o Related Functionality: 
Ultimately, we could have provided all printing functionality in the 
ReportingSystem entity, which means that the printing of the 
Employee Data could have also been added as a related 
functionality. For the sake of this example, I isolated them for the 
sake of keeping the objects as isolated and independant as 
possible. As such, this engine only has one method. PrintReport 
which will print either a weekly, a monthly or a yearly report on the 
timesheet data for either an employee in particular or all the 
employees in the data file. 

As you can see, the Object Oriented Approach to problem solving is 
quite different from the Modular Approach. With all this information you 
now have on the two methods, you might be wondering if there are certain 
projects, or certain parts of a big project that could benefit from the 
Modular Approach and likewise for the Object Oriented Approach. Is there 
situations where you would be better off using one method over another. 
In this next section, I will discuss this subject, based on my own personal 
experiences with both methods. 

WHEN ONE METHOD SHOULD BE USED OVER ANOTHER: 

If we take into consideration both methods used in the example above. 
We can see that both of them managed to define the problem, and 



possible organization adequately. In their own domain, we can say that 
they were both as successful as the other in doing what they are 
supposed to do. So where and when can and should you use one method 
over another? My experience has shown me that the best way to answer 
that question is to go by development domains they each have their own 
best way of describing their needs. Let's take a few examples industries to 
see how to select the best method. 

 Any Mathematic Oriented Industries: 
In these we can include financial institutions, banks, accountant firms, 
statistical analysis firms and other related domain where the formulas 
prevail over the method. In these particular cases, chances are that 
problems will be defined based on the specific calculations that need to 
be performed. Since in programming, calculations translate to functions 
in code, the Modular Programming approach to problem solving can 
usually relate more closely to the description of the problem at hand. 
Therefore if you are working for such a firm, or you want to create an 
application for that specific industry, The modular approach would be 
the best way by which you can present your project to the people that 
know the industry well in such a way that they will understand you 
clearly and faster. 

 

 Most Science Related Industries: 
In here we can throw any chemical engineering, Physics based 
Research and Development and any other related industries that 
depend on specific methods and order of things in order to perform at 
their best. Again in these industries, formulas are pretty important when 
describing the problem but usually not as much as when describing the 
specific order in which events and calculations need to happen. There's 
nothing quite like Modular Programming approach when describing an 
order in execution step that is required by the domain you are 
developing in and must be followed flawlessly. Therefore, people in this 
industry will tend to talk in groups of related steps needed to accomplish 

a task. 

 

 Database Native Industries: 
In this category Falls alot of different businesses. For example Inventory 
management businesses, call management and many communication 



related industries, essentially, any business who's business is related to 
data. Database Software has evolved, much like O.O.P. in order to 
answer the new, growing, more complex database needs of these 
companies. So today, when you encounter one of these industries in 
your career, chances are, when they describe a problem, they will be 
describing the problem based on Tables in a database, relationships 
between the tables and the role each table plays within the whole 
database structure. Also, when they give names to their tables, they will 
more than likely describe them precisely as they would an object, a 
table will represent an object, it's fields will represent the object 
properties. Because of this high resemblence to object oriented 
programming methods, O.O.P. stands ahead of modular program as far 
as implementing a solution that will make sense to the way people from 

these specific companies conprehend the way they do business. 

 

 Document Driven Industries: 
Lawyer firms, sales force companies, publicity related enterprises all fall 
in this category. Even though these industries would probably need 
databases and talk about them like database native industries, To the 
people of these industries don't rely on a particular table, but more on 
everything that pertains to a particular client. When these people 
describe their needs, they will typically talk of a file in which different 
type of information (usually forms and contracts) need to all be part of 
the file when they leave. This is true whether they are talking about a 
physical file or an electronic data retrieval system (such as data 
replication systems). O.O.P. tends to play this role well. However I can 
advise that very specific names to the objects will be required. 
Especially as far as lawyer firms go since to them each form has a 
name, a number, something that makes the forms and contracts unique 
in contents and purpose. They typically worked hard to create their 
standards and procedure and will expect their standards to be followed 

even in an application. 

 

 Multimedia And Entertaiment Industries: 
Everything that pertains to entertainment. For example, Music software 
designers, Recording studios, game designers, even book publishers, 
and video production groups. In these industries, database are not the 
primary concern, they are more concerned with the product they are 



creating for their customer. And you'll probably notice that they 
explained things always based on the type of work they do, who they do 
it for and what elements they need to do their job right as per the work 
to be done. All in all, these industries today all talk in a very Object 
Oriented way because all they work with are physical things or physical 
representation of different things, especially the gaming industry since 
by today's standard the gaming industry is all about 3D worlds and 3D 
object representations. So when they want you to develop a game 
module for a specific game, chances are, they will describe them to you 
in terms of an object you will be adding methods to or creating from 
scratch. Of course object oriented is better suited, however, it's 
important to know that one of the reasons why O.O.P. was so 
propagated in these industries isn't because Modular Programming 
couldn't have done job, but rather a simple choice to go the O.O.P. way 
when they created DirectX and OpenGL standards and specifications. If 
OpenGL was created using the modular programming approach 
instead, today, Modular Programming would have been the gaming 

standard. 

This covers the industry and which method you're more likely to want to 
employ when developing (and presenting) a solution to the people that 
work in these respective industries. There is another factor that can be a 
very big player in your decision to use one method over another. That 
factor is one of the size of a project and hence it's complexity. There are 
many cases where even a program, for an entirely O.O.P. oriented 
industry like Multimedia and Entertainment, just doesn't need O.O.P. or 
would fail to take advantage of the O.O.P. approach to bring a solution to 
that particular problem. Likewise, O.O.P. could very well be the only viable 
solution to a problem brought forth by industries that have never needed 
O.O.P. before. It really all depends on the way they can explain these 
problems based on what they know of their industry. One last factor could 
be that the company you are developing for already have tools and do not 
wish to purchase tools to accomodate for the missing method. In other 
words, companies could very well impose their development methods and 
expect you to be able to arrive at a solution using their method whether it's 
suited for the task or not. In those case you just need to make the best of 
what you have. 

These represent how I would deal with problems in these specific 
industries. I'll take the time to see how a concept can best be described to 
the users of the program I am making and if the description is based on 
objects, unless there is a restriction that stops me from doing so, I will use 



an O.O.P. approach especially when you are creating an entirely new 
project. When you think about it, there isn't just the program that you are 
making to consider but also how easy your solution will be for the users to 
understand and use. This means that you have to take the time, in making 
your decision, to see what kind of user you are dealing with to see how 
they might react to one or the other of the explanation methods and based 
on the findings of that little research, use the method that can be thought 
the fastest and easiest. 

WHERE OBJECT ORIENTED PROGRAMMING FAILED: 

When you talk about O.O.P. today, you'll hear some very different 
explanations by different software professionals. Since O.O.P. is found on 
the 5 pillars I mentionned about, how can these answers be so diverse 
and, in some cases, so out of touch with each other? The first answer I 
have to bring here is that depending on when developers started learning 
O.O.P. they were given some very different notions on what exactly 
O.O.P. is and how to efficiently use it for problem solving. 

One of these new notions arrived when Java hit the mainstream 
programming industry. Which suddently told you that everything 
imaginable in programming is now an object including strings, integer and 
other datatypes. hence the base of all programming should be the object. 
The problem with this notion is that it's true only for languages that are 
designed around the same concept as Java where everything you can 
create is an object. This does not today constitute the majority of the 
popular languages you can use today. When you think about it, a datatype 
has no reason to be an object simply because of the way a compiler 
organizes memory. An object has an overhead that would represent a 
major waist of memory compared to storing the classic 4 bytes for 
integers. All these little things is what makes Java so slow and a perfect 
example of sloppy bloated code waiting for a faster processor to surface 
so it can make it look faster. 

Another one of the confusions in O.O.P. definitions arrived when Objects 
Modelling techniques like U.M.L. (Unified Modeling Language) made 
surface. U.M.L. in itself is not a bad approach at all in problem solving. 
However, today, alot of what defines U.M.L. is confused, or atleast stated 
when talking about O.O.P. Often when I talk to people, they will mention 
such notions as agreggations and composition. The problem with this is 
that any language that can do O.O.P. doesn't have an aggregation or 
composition construct per se. But these people say that they do alot of 



aggregations and compositions when they develop. I then have to explain 
to them that these are object modeling principles and have no direct 
equivalent in the language itself. Aggregation denotes a whole/part 
relationship between objects. For example a Circle is the whole object and 
a point, is part of a circle objects this is created as an aggregation of two 
objects. A Composition can be used to create a relationship between 
objects too but it has the added ability to have a source and a destination 
(Circle knows about Point, but Point doesn't know anything about circle). 
These are Object Modelling principles and cannot be directly coded in a 
language. but when translating the principle to the selected programming 
language, it could mean that the module that defines Circle will have an 
#include "point.h". But it does not mean that because this include 
statement is in the Circle Module that you have created an aggregation 
necessarily. 

OBJECT ORIENTED MYTHS: 

If you have been to forums and message boards that compare and 
debate modular programming and object oriented programming, you 
might have noticed that many claim O.O.P. is the only intelligent methods 
and start enumerating reasons that have absolutely no direct relationship 
to O.O.P. I've seen these too many times and it's a shame to see most of 
them are enumerated in an effort to bring down modular program and try 
to boast O.O.P. as a better approach. I will be listing here some of the 
more popular myths about O.O.P. that I have seen and tell you what I 
have experienced in regards to the myths themselves. 

 Object Oriented Programming is closer to how people think. 
The first thing I can say about this is to take a look at the industries I've 
mentionned previously in this article and notice how the people working 
in these industries typically think. Some people are simply better suited 
to think in terms of modular programming, others seem to think that 
O.O.P. really does offer a clearer approach that as human beings, they 
can more naturally follow. But the truth of the matter is that everything 
depends alot on the working experiences of the individuals. Each 
method, if you were to do a survey, would probably be close to equal in 

results. 

 

 Object Oriented Programming makes debugging quicker and 
easier. 



I'm sure this isn't the first time you've heard of this myth. The previous 
myth is largely responsible for the fact that people believe that 
debugging O.O.P. based programs is easier and quicker to locate and 
fix a bug. The truth of the matter is, when a bug does occur it will usually 
do so either in one of the methods of and object which in most cases is 
equivalent to a procedure or a function. If you have implemented an 
elaborate hierarchy of objects, making proper use of polymorphism you 
might find yourself looking through more than one procedure called 
Draw and that could go double if Abstraction was used as well In 
essence, debugging is not about a programming method per se. It is 
rather about what you return to the user in your error management 
routines that can help locate a bug quickly or not. Once you have 
located the bug fixing it in either methods is equally easy and fast. 

 

 Object Oriented Programming gives you a better organization of 
your code. 
This to me is debatable. Atleast I wouldn't phrase it this way. I would 
choose to say: "O.O.P. forces you to abide by a given standard" which 
results in all your objects being defined and implemented the same way. 
Differente developers visualize and comprehend programming concepts 
in very different ways. Some can instinctively break a process into a 
workable set of procedures and functions but just can't relate to the 
Object Oriented Approach simply because they skip that step of 
definition to go directly to what actions need to be performed. Modular 
Programming allows you to organize your code pretty much anyway you 
want and when you think about that concept. I could easily organize a 
user defined type (or more) and a set of procedures that display or 
manipulate elements of that datatype in such a way that it can be made 
to look quite close to how I would have done it using the Object 
Oriented approach. 

 

 Object Oriented Programming is more powerful than Modular 
Programming. 
I really have to draw the line at this one. So far, in all of my 30 years of 
programming in both methods, I have yet to see O.O.P. be able to do 
anything that can't be done in a procedural language. In my opinion, this 
belief is because new comers to programming take a look at what's out 
there and see things like OpenGL, OpenAL, DirectX, Allegro and all 



"popular" engines for making the "hot" games and think to themselves: 
"Wow, O.O.P. can do all that? Amazing!" The problem is that the 
newcomers will usually stop right there. They won't even think for a 
second that Modular Programming can do the same because they saw 
the O.O.P. version first. To that I say, just look at the METHOD 
APPROACH COMPARISON I did earlier in this article. Both methods 
defined the problem and could bring a solution to that problem. If you 
took the time to do both of these methods on any programming projects 
you have, you'll find that for every O.O.P. problem solving definition, 
there is an equal (sometimes shorter even) Modular Approach that can 

do the same job. This pretty much sets this myth rest on it's own. 

I do have to say however that there are some myths that I found to be 
true however, again based on my own experience. And when you think 
about the reasons I give here, you'll find it hard to see it differently. This 
told me that O.O.P. can have it's specific place. Here are the two most 
widespread myths that have proven themselves to me as being true. 

 Object Oriented Programming is ideal for simulation projects: 
As you know, a simulation is a program that reproduces the some parts 
of the real world. As such, it makes perfect sense to represent the real 
world using an object model. In a simulation you are also likely to see 
relationships between objects as well as interaction among these 
objects. O.O.P. is definitaly adapted for this kind of software 
development and can more closely mimic the real world object it is 
trying to simulate. This is true for both outside objects reacting and 
interacting with each other, or to explain and define all the inner 
components that make up a bigger more complex object. There's no 
denying that O.O.P. can be wisely used here for all these reasons. Note 
that Modular programming could do the job as well. But when you think 
about it, it would be hard to use the modular approach to explain 
objects, their properties and their methods as well as their relationships 
to other objects in a procedural way. It could be done, but in this 
particular case, it would be longer to do when you'd get to explaining the 
relationship between objects or between components of an object. This 
is in the analysis only however, the modular code that could do what the 
object oriented code could wouldn't be much different in size and could 

actually have a very similar coding organization in both cases. 

 



 Object Oriented Programming is ideal for Business knowledge 
development: 
This one today is very true, but O.O.P. itself is not the main or only 
reason why it is so true today. As I mentionned in the database related 
industries, database systems have evolved to answer the growing 
needs of database administrators and businesses worldwide. As such, 
an Ojbect model and a database model are usually very closely related. 
So related in fact that it would actually be longer to seperated the model 
and break them down modularly to explain their functionalities and 
roles. As such, This is a perfect scenario where O.O.P. really has a 
distinct advantage over Modular Programming. Sure you could devise a 
set of procedures and functions and have them perform the designated 
task, however, in businesses, it is all about relationships between 

business objects. 

THE BOTTOM LINE: 

The bottom line is quite simple. It would not be wise to decide that 
everything can be made from one of these methods and stick to it alone 
for all your programming endeavors. In some cases, O.O.P. will naturally 
be able to represent a problem much more efficiently where in other 
cases, a modular approach could save you loads of time by being able to 
represent the problem much quicker, easier and cleaner than any O.O.P. 
model ever could. it's important to remember that Modular Programming 
and Object Oriented Programming are two problem solving methods and 
that both are designed to bring answers to questions and solutions to 
problems. They are two different means of implementing a solution and 
that is really all that needs to be remembered. 

It's important that you remember that this article really reflect my own 
experiences with both problem solving methods and my own personal 
opinions about them. Others probably have a different point of view and 
may have all the right reasons to believe them. All I can say is so far, in 
my 30 years of personal and professional development, my judgement on 
these has not failed me once. It takes good common sense and a bit of 
logic to make the right decisions and opinions about them. I will finish by 
saying that it's not wise to destroy a problem solving method over another, 
they truely do have their advantages and could make your life easier if 
you didn't reject either of them. It is even worse to believe what others say 
without knowledge. This means that if you want to form your opinions, 
don't read comments from anyone and believe them blindly. Give Modular 
Programming and Object Oriented Programming atleast a fair chance, 



find a project for each and see where each method takes you. It won't be 
bad for your career to know when each methods has advantages so it 
should be time well spent on your part. Learn them, evaluate them, 
compare them THEN when you have the knowledge you need, you can 
make a good choice. 

As you now know, with all my writings, I am always opened to discussion 
and comments, suggestions and even debates. You can email me 
whenever you want to clear things that weren't clear to you when you read 
this. This article is the result of my own experience with the different 
programming methods. Your past experiences might give you a similar or 
different point of view on this subject. I'd like to hear of them because I 
know that everyone has his or her own thoughts on this subject, I see it 
every day on forums I visit. Until the next time I write, happy reading and 
programming no matter which method you like to use. 

MystikShadows 

Stéphane Richard 

srichard@adaworld.com 

mailto:srichard@adaworld.com

