MANCHESTER

1824
The University of Manchester

COMP26120: Linked List in C
(2019/20)

Lucas Cordeiro
lucas.cordeiro@manchester.ac.uk

Linked List

* Lucas Cordeiro (Formal Methods Group)
» Jucas.cordeiro@manchester.ac.uk
= Office: 2.28
= Office hours: 15-16 Tuesday, 14-15 Wednesday

* Textbook:

= Algorithm Design and Applications (Chapter 2)
* Introduction to Algorithms (Chapter 10)
» C How to Program (Chapter 12)

These slides are based on the
lectures notes of “C How to Program”

Intended learning outcomes

To be able to allocate and free memory
dynamically for data objects

To form linked data structures using pointers,
self-referential structures and recursion

To be able to create and manipulate linked lists

To understand various important applications of
linked data structures

To study secure C programming practices for
pointers and dynamic memory allocation

Introduction

* We've studied fixed-size data structures such
as single-subscripted arrays, double-
subscripted arrays and structs

typedef struct account {
unsigned short age;
char name[100];

} accountt; Column 0 Column | Column 2 Column 3

Row0o al01[0] al01[1] af01[21 a[01[3]

int main()

{
int x[3];
int a[3][4];

Row!l a[1][071 a[11011 a[11021 al[11[31

Row2 a[2 J[01 al[21[1] al 21021 al[21][31

accountt acount;
return O;

»

s

Column index
Row index
Array name

Introduction

* We've studied fixed-size data structures such
as single-subscripted arrays, double-
subscripted arrays and structs

* Dynamic data structures
= They can grow and shrink during execution
* Linked lists

* Allow insertions and removals anywhere in a
linked list

—> 15 ° > 5 o=====> 10
head

Self-referential structures

* Self-referential structures

= Structure that contains a pointer to a structure of the
same type

» Terminated with a NULL pointer (0)
typedef struct node {

int data; Not setting the link in the last
struct node *nextPtr: node of a list to NULL can
} nodet; lead to runtime errors
= nextPtr

o Points to an object of type node
o Referred to as a link
o Ties one node to another node

= Can be linked together to form useful data structures
such as lists, queues, stacks and trees

Dynamic memory allocation

* Dynamic memory allocation
= Obtain and release memory during execution
e malloc

» Takes number of bytes to allocate
0 Use sizeof to determine the size of an object

» Returns pointer of type void *

o Avoid * pointer may be assigned to any pointer
o If no memory available, returns NuLL

= Example: nodet *newptr = (nodet *)malloc(sizeof(nodet));
e free

» Always deallocates memory allocated by malloc to
avoid memory leak

= Takes a pointer as an argument

o free (newPtr);

Dynamic memory allocation

Two self-referential structures linked together

15

- >

int main() {

// allocates memory

10

nodet *nodel
nodet *node?2

(nodet *)ma11oc(sizeof(nodet));]
(nodet *)malloc(sizeof(nodet));

nodel->data

=1

5;

nhode2->data = 10;

// 1ink nodel to node?2
nodel->nextPtr
node2->nextPtr
// Deallocates

free(nodel);
free(node?);
return 0;

= node2;
= NULL;

If there exists no memory
available, then malloc
returns NULL

memory allocated by malloc

Linked lists properties

* Linked list

Linear collection of self-referential class objects,
called nodes

Connected by pointer links
Accessed via a pointer to the first node of the list

Subsequent nodes are accessed via the link-pointer
member of the current node

Link pointer in the last node is set to nuLL to mark the
list' s end

headl lcurrentPtr

R P

10

Linked lists properties

* Linked list

Linear collection of self-referential class objects,
called nodes

Connected by pointer links
Accessed via a pointer to the first node of the list

Subsequent nodes are accessed via the link-pointer
member of the current node

Link pointer in the last node is set to nuLL to mark the
list' s end

* Use a linked list instead of an array when

You have an unpredictable number of elements
Your list needs to be sorted quickly

Linked lists properties

* Linked lists are dynamic, so the length of a list
can increase or decrease as necessary

* Can we change the array size after compiling the
program? What are the problems here?

» Arrays can become full

o An array can be declared to contain more elements than the
number of data items expected, but this can waste memory

char buf{10]; int x;

strepy {buf, "14 characters”);

char buf{10]; int x;

14 et | hT] tat [t tat | et T et | s O

Linked lists properties

* Linked lists are dynamic, so the length of a list
can increase or decrease as necessary

* Can we change the array size after compiling the
program? What are the problems here?
» Arrays can become full

o An array can be declared to contain more elements than the
number of data items expected, but this can waste memory

* Linked lists become full only when the system
has insufficient memory to satisfy dynamic
storage allocation requests

= |t can provide better memory utilization

Linked lists properties

* Linked-list nodes are normally not stored
contiguously in memory

= How arrays are stored in memory? What would be the
advantage here?

o This allows immediate access since the address of any
element can be calculated directly based on its position
relative to the beginning of the array

2 Linked lists do not afford such immediate access

* Logically, however, the nodes of a linked list
appear to be contiguous

» Pointers take up space and dynamic memory
allocation incurs the overhead of function calls

A graphical representation of a
linked list

startPtr

!
!

15| &

10

int main() {

7/ T1ink the nodes

startPtr = nod
nhodel->nextPtr
node2->nextPtr
node3->nextPtr

return 0;

el;

hode?2;
node3;
NULL,

> 18

Pointers should be initialised
before they’re used

A structure’s size is not
necessarily the sum of the size
of its members (machine-
dependent boundary
alignment)

Error prevention when using
linked lists

* If dynamically allocated memory is no longer
needed, use free to return it to the system

= Why must we set that pointer to NULL?

o eliminate the possibility that the program could refer to
memory that’s been reclaimed and which may have already
been allocated for another purpose

* |s it an error to free memory not allocated
dynamically with malloc?

» Referring to memory that has been freed is an error,
which results in the program crashing (double free)

Exercise

* Fill in the blanks in each of the following:

a) Aself- structure is used to form dynamic data
structures.

b) Function IS used to dynamically allocate
memory.

C) A(n) is a specialized version of a linked list in

which nodes can be inserted and deleted only from the
start of the list.

d) Functions that look at a linked list but do not modify it
are referred to as

e) Function
memory.

IS used to reclaim dynamically allocated

lllustrative example
about linked lists

* We will show an example of linked list that
manipulates a list of characters

* You can insert a character in the list in
alphabetical order (function 1nsert) or to
delete a character from the list (function
delete)

CVWOoO~NONWNDEDWN=

WIN=0 VWO~ WNNDIH WN =

// Fig. 12.3: figl2_03.c

// Inserting and deleting nodes in a list
#include <stdio.h>

#include <stdlib.h>

// self-referential structure

struct listNode {
char data; // each 1listNode contains a character
struct 1listNode *nextPtr; // pointer to next node

}s

typedef struct 1listNode ListNode; // synonym for struct listNode
typedef ListNode *ListNodePtr; // synonym for ListNode*

// prototypes
void insert(ListNodePtr *sPtr, char value);

char delete(ListNodePtr *sPtr, char value);
int 1sEmpty(ListNodePtr sPtr);

void printList(ListNodePtr currentPtr);
void instructions(void);

int main(void)

{

Inserting and deleting nodes in a list (Part 1 of 8)

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

ListNodePtr startPtr = NULL; // initially there are no nodes
char item; // char entered by user

instructions(); // display the menu
printf("%s", "7 ");

unsigned int choice; // user's choice
scanf("%u", &choice);

// loop while user does not choose 3
while (choice != 3) {

switch (choice) {
case 1:
printf("%s", "Enter a character: ");
scanf("\n%c", &item);
insert(&startPtr, item); // insert item in list
printList(startPtr);
break;
case 2: // delete an element
// 1f 1ist is not empty
if (lisEmpty(startPtr)) {
printf("%s", "Enter character to be deleted: ");
scanf("\n%c", &item);

Inserting and deleting nodes in a list (Part 2 of 8)

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

// 1f character is found, remove it
1if (delete(&startPtr, item)) { // remove 1item
printf("%c deleted.\n", item);

printList(startPtr);
}
else {
printf("%c not found.\n\n", item);
}
}
else {
puts('List is empty.\n");
}
break;
default:

puts("Invalid choice.\n");
instructions();
break;

}

pr"in't'F("%S", ll? Il);
scanf("%u", &choice);

Inserting and deleting nodes in a list (Part 3 of 8)

(a) *sPtr previousPtr currentPtr

A e———m—» B —————>» D o—»E\
newPtr
— ¢\
(b) *sPtr previousPtr currentPtr

A ———p B ® D ———p [\
1
|
reassigned — wPtr v .
. |
pointers o

Inserting a node in order in a list

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

puts("End of run.™);
}

// display program instructions to user
void instructions(void)

{
puts("Enter your choice:\n"
" 1 to insert an element into the 1list.\n"
" 2 to delete an element from the Tlist.\n"
" 3 to end.");
}

// insert a new value into the 1list in sorted order
void insert(ListNodePtr *sPtr, char value)

{
ListNodePtr newPtr = malloc(sizeof(ListNode)); // create node

1f (newPtr !'= NULL) { // 1s space available?
newPtr->data = value; // place value in node
newPtr->nextPtr = NULL; // node does not link to another node

ListNodePtr previousPtr = NULL;
ListNodePtr currentPtr = *sPtr;

Inserting and deleting nodes in a list (Part 4 of 8)

96

97

98

929

100
101
102
103
104
105
106
107
108
109
110
11
112
113
114
115
116

// loop to find the correct location i1n the 1list

while (currentPtr !'= NULL &% value > currentPtr->data) {
previousPtr = currentPtr; // walk to ...
currentPtr = currentPtr->nextPtr; // ... next node

}

// 1nsert new node at beginning of Tist
1f (previousPtr == NULL) {
newPtr->nextPtr = *sPtr;
*sPtr = newPtr;
}
else { // insert new node between previousPtr and currentPtr
previousPtr->nextPtr = newPtr;
newPtr->nextPtr = currentPtr;

}

else {

printf("%c not inserted. No memory available.\n", value);

Inserting and deleting nodes in a list (Part 5 of 8)

(a) *sPtr previousPtr currentPtr

A e——p B ——p» (———»p» D o—»E\
(b) *sPtr

previousPtr currentPtr

A

tempPtris used to free ' |

the memory allocated to g tempPtrisalocal
the node that stores 'C' cempPtr automatic variable

Deleting a node from a list

117 // delete a list element
118 char delete(ListNodePtr *sPtr, char value)

19 {
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

// delete first node if a match is found

if (value == (*sPtr)->data) {
ListNodePtr tempPtr = *sPtr; // hold onto node being removed
*sPtr = (*sPtr)->nextPtr; // de-thread the node
free(tempPtr); // free the de-threaded node
return value;

}

else {
ListNodePtr previousPtr = *sPtr;
ListNodePtr currentPtr = (*sPtr)->nextPtr;

// loop to find the correct location in the 1ist

while (currentPtr != NULL &% currentPtr->data != value) {
previousPtr = currentPtr; // walk to ...
currentPtr = currentPtr->nextPtr; // ... next node

Inserting and deleting nodes in a list (Part 6 of 8)

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

}

// delete node at currentPtr

if (currentPtr !'= NULL) {
ListNodePtr tempPtr = currentPtr;
previousPtr->nextPtr = currentPtr->nextPtr;

free(tempPtr);
return value;
}
}
return '\0';

// return 1 if the Tist is empty, 0 otherwise
int isEmpty(ListNodePtr sPtr)

{
}

return sPtr == NULL;

Inserting and deleting nodes in a list (Part 7 of 8)

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

// print the 1list
void printList(ListNodePtr currentPtr)

{

// 1f 1ist i1s empty
it (isEmpty(currentPtr)) {
puts('List is empty.\n");
}
else {
puts("The 1list 1s:");

// while not the end of the 1list

while (currentPtr != NULL) {
printf("%c --> ", currentPtr->data);
currentPtr = currentPtr->nextPtr;

}

puts ("NULL\n");

Inserting and deleting nodes in a list (Part 8 of 8)

Enter your choice:
1 to insert an element into the list.
2 to delete an element from the 1ist.
3 to end.

7?1

Enter a character: B

The Tist is:

B --> NULL

71
Enter a character: A

The Tist is:
A --> B --> NULL

7?71

Enter a character: C
The 1ist is:

A -->B --> C --> NULL

? 2
Enter character to be deleted: D
D not found.

Sample output for the program (Part 1 of 2)

? 2

Enter character to be deleted: B
B deleted.

The Tist is:

A --> C -—> NULL

? 2

Enter character to be deleted: C
C deleted.

The Tist is:

A --> NULL

? 2

Enter character to be deleted: A
A deleted.

List 1s empty.

? 4
Invalid choice.

Enter your choice:
1 to insert an element into the 1list.
2 to delete an element from the 1ist.
3 to end.

? 3

End of run.

Sample output for the program (Part 2 of 2)

Analysis of the linked list

OPERATION

add to start of list
add to end of list
add at given index

find an object
remove first element
remove last element
remove at given index

size

RUNTIME (Big-O)

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

puts("End of run.™);
}

// display program instructions to user
void instructions(void)

{
puts("Enter your choice:\n"
" 1 to insert an element into the 1list.\n"
" 2 to delete an element from the Tlist.\n"
" 3 to end.");
}

// insert a new value into the 1list in sorted order
void insert(ListNodePtr *sPtr, char value)

{
ListNodePtr newPtr = malloc(sizeof(ListNode)); // create node

1f (newPtr !'= NULL) { // 1s space available?
newPtr->data = value; // place value in node
newPtr->nextPtr = NULL; // node does not link to another node

ListNodePtr previousPtr = NULL;
ListNodePtr currentPtr = *sPtr;

—0O(1)

Analysis of the linked list (insert) — Part 1 of 2

96

97

98

929

100
101
102
103
104
105
106
107
108
109
110
11
112
113
114
115
116

// loop to find the correct location in the 1list

while (currentPtr !'= NULL &% value > currentPtr->data) {
previousPtr = currentPtr; // walk to ...
currentPtr = currentPtr->nextPtr; // ... next node

}

// 1nsert new node at beginning of Tist
1f (previousPtr == NULL) {
newPtr->nextPtr = *sPtr;
*sPtr = newPtr;
}
else { // insert new node between previousPtr and currentPtr
previousPtr->nextPtr = newPtr;
newPtr->nextPtr = currentPtr;

O(n)

—0(1)

}

}

else { <
printf("%c not inserted. No memory available.\n", value);

}

Analysis of the linked list (insert) — Part 2 of 2

Insert -- runtime: O(1)+0(n)+0O(1) = O(n)

117 // delete a list element
118 char delete(ListNodePtr *sPtr, char value)

119 {

120 // delete first node if a match is found

121 if (value == (*sPtr)->data) {

122 ListNodePtr tempPtr = *sPtr; // hold onto node being removed
123 *sPtr = (*sPtr)->nextPtr; // de-thread the node

124 free(tempPtr); // free the de-threaded node

125 return value;

126 }

127 else {

128 ListNodePtr previousPtr = *sPtr; c) 1

129 ListNodePtr currentPtr = (*sPtr)->nextPtr; ()
130

131 // loop to find the correct location in the 1ist

132 while (currentPtr != NULL &% currentPtr->data != value) {
133 previousPtr = currentPtr; // walk to ...

134 currentPtr = currentPtr->nextPtr; // ... next node

135 }

136

—O(1)

O(n)

Analysis of the linked list (delete) — Part 1 of 2

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

}

// delete node at currentPtr
1if (currentPtr != NULL) {
ListNodePtr tempPtr = currentPtr;

previousPtr->nextPtr = currentPtr->nextPtr; C)(1)
free(tempPtr);
return value;
}
}
return '\0';

// return 1 if the Tist is empty, 0 otherwise
int isEmpty(ListNodePtr sPtr)

{
}

return sPtr == NULL;

Analysis of the linked list (delete) — Part 2 of 2

Delete -- runtime: O(1)+0O(n)+0O(1) = O(n)

Analysis of the linked list

OPERATION

add to start of list
add to end of list
add at given index

find an object
remove first element
remove last element
remove at given index

size

RUNTIME (Big-O)

Secure C Programming

Chapter 8 of the CERT Secure C Coding
Standard

* Chapter 8 of the CERT Secure C Coding
Standard is dedicated to memory-management
recommendations and rules—many apply to the

uses of pointers and dynamic-memory allocation
presented in this chapter.

* For more information, visit
www.securecoding.cert.org.

Summary
(Secure C Programming)

* Pointers should not be left uninitialized

* They should be assigned either NULL or the
address of a valid item in memory

* When you use free to deallocate dynamically
allocated memory, the pointer passed to free is
not assigned a new value, so it still points to the
memory location where the dynamically
allocated memory used to be

Summary
(Secure C Programming)

* Using a pointer that's been freed can lead to
program crashes and security vulnerabilities

* When you free dynamically allocated memory,
you should immediately assign the pointer either
NULL or a valid address

* We chose not to do this for local pointer
variables that immediately go out of scope after
a call to free

Summary
(Secure C Programming)

* Undefined behavior occurs when you attempt to
use free to deallocate dynamic memory that was
already deallocated—this is known as a “double
free vulnerability”

* To ensure that you don’t attempt to deallocate
the same memory more than once, immediately
set a pointer to NULL after the call to free—
attempting to free a NULL pointer has no effect

Summary
(Secure C Programming)

* Function malloc returns NULL if it's unable to
allocate the requested memory

* You should always ensure that malloc did not
return NULL before attempting to use the pointer
that stores malloc’s return value

