
COMP26120: Linked List in C
(2019/20)

Lucas Cordeiro
lucas.cordeiro@manchester.ac.uk

Linked List
•  Lucas Cordeiro (Formal Methods Group)

§  lucas.cordeiro@manchester.ac.uk
§  Office: 2.28
§  Office hours: 15-16 Tuesday, 14-15 Wednesday

•  Textbook:
§  Algorithm Design and Applications (Chapter 2)
§  Introduction to Algorithms (Chapter 10)
§  C How to Program (Chapter 12)

These slides are based on the
lectures notes of “C How to Program”

•  To be able to allocate and free memory
dynamically for data objects

•  To form linked data structures using pointers,
self-referential structures and recursion

•  To be able to create and manipulate linked lists
•  To understand various important applications of

linked data structures
•  To study secure C programming practices for

pointers and dynamic memory allocation

Intended learning outcomes

•  We’ve studied fixed-size data structures such
as single-subscripted arrays, double-
subscripted arrays and structs

Introduction

typedef struct account {
 unsigned short age;
 char name[100];
} accountt;

int main()
{
 int x[3];
 int a[3][4];
 accountt acount;
 return 0;
}

•  We’ve studied fixed-size data structures such
as single-subscripted arrays, double-
subscripted arrays and structs

•  Dynamic data structures
§  They can grow and shrink during execution

•  Linked lists
§  Allow insertions and removals anywhere in a

linked list

Introduction

15 10

5
head

Self-referential structures
•  Self-referential structures

§  Structure that contains a pointer to a structure of the
same type

§  Terminated with a NULL pointer (0)

§  nextPtr
o  Points to an object of type node
o Referred to as a link
o  Ties one node to another node

§  Can be linked together to form useful data structures
such as lists, queues, stacks and trees

typedef struct node {
 int data;
 struct node *nextPtr;
} nodet;

Not setting the link in the last
node of a list to NULL can

lead to runtime errors

•  Dynamic memory allocation
§  Obtain and release memory during execution

•  malloc
§  Takes number of bytes to allocate

o Use sizeof to determine the size of an object
§  Returns pointer of type void *

o  A void * pointer may be assigned to any pointer
o  If no memory available, returns NULL

§  Example: nodet *newPtr = (nodet *)malloc(sizeof(nodet));
•  free

§  Always deallocates memory allocated by malloc to
avoid memory leak

§  Takes a pointer as an argument
o  free (newPtr);

Dynamic memory allocation

Dynamic memory allocation

Two self-referential structures linked together

int main() {
 // allocates memory
 nodet *node1 = (nodet *)malloc(sizeof(nodet));
 nodet *node2 = (nodet *)malloc(sizeof(nodet));
 node1->data = 15;
 node2->data = 10;
 // link node1 to node2
 node1->nextPtr = node2;
 node2->nextPtr = NULL;
 // Deallocates memory allocated by malloc
 free(node1);
 free(node2);
 return 0;
}

10

15

If there exists no memory
available, then malloc
returns NULL

•  Linked list
§  Linear collection of self-referential class objects,

called nodes
§  Connected by pointer links
§  Accessed via a pointer to the first node of the list
§  Subsequent nodes are accessed via the link-pointer

member of the current node
§  Link pointer in the last node is set to NULL to mark the

list’s end

Linked lists properties

15 10

5

head currentPtr

•  Linked list
§  Linear collection of self-referential class objects,

called nodes
§  Connected by pointer links
§  Accessed via a pointer to the first node of the list
§  Subsequent nodes are accessed via the link-pointer

member of the current node
§  Link pointer in the last node is set to NULL to mark the

list’s end
•  Use a linked list instead of an array when

§  You have an unpredictable number of elements
§  Your list needs to be sorted quickly

Linked lists properties

Linked lists properties
•  Linked lists are dynamic, so the length of a list

can increase or decrease as necessary
•  Can we change the array size after compiling the

program? What are the problems here?
§  Arrays can become full

o  An array can be declared to contain more elements than the
number of data items expected, but this can waste memory

Linked lists properties
•  Linked lists are dynamic, so the length of a list

can increase or decrease as necessary
•  Can we change the array size after compiling the

program? What are the problems here?
§  Arrays can become full

o  An array can be declared to contain more elements than the
number of data items expected, but this can waste memory

•  Linked lists become full only when the system
has insufficient memory to satisfy dynamic
storage allocation requests
§  It can provide better memory utilization

Linked lists properties
•  Linked-list nodes are normally not stored

contiguously in memory
§  How arrays are stored in memory? What would be the

advantage here?
o  This allows immediate access since the address of any

element can be calculated directly based on its position
relative to the beginning of the array

✽  Linked lists do not afford such immediate access

•  Logically, however, the nodes of a linked list
appear to be contiguous
§  Pointers take up space and dynamic memory

allocation incurs the overhead of function calls

A graphical representation of a
linked list

18

15

10 …

startPtr

int main() {
 …
 // link the nodes
 startPtr = node1;
 node1->nextPtr = node2;
 node2->nextPtr = node3;
 node3->nextPtr = NULL;
 …
 return 0;
}

A structure’s size is not
necessarily the sum of the size
of its members (machine-
dependent boundary
alignment)

Pointers should be initialised
before they’re used

Error prevention when using
linked lists

•  If dynamically allocated memory is no longer
needed, use free to return it to the system
§  Why must we set that pointer to NULL?

o  eliminate the possibility that the program could refer to
memory that’s been reclaimed and which may have already
been allocated for another purpose

•  Is it an error to free memory not allocated
dynamically with malloc?

§  Referring to memory that has been freed is an error,
which results in the program crashing (double free)

Exercise
•  Fill in the blanks in each of the following:
a)  A self- ______ structure is used to form dynamic data

structures.

b)  Function _____ is used to dynamically allocate
memory.

c)  A(n) _____ is a specialized version of a linked list in
which nodes can be inserted and deleted only from the
start of the list.

d)  Functions that look at a linked list but do not modify it
are referred to as ________.

e)  Function _____ is used to reclaim dynamically allocated
memory.

Illustrative example
about linked lists

•  We will show an example of linked list that
manipulates a list of characters

•  You can insert a character in the list in
alphabetical order (function insert) or to
delete a character from the list (function
delete)

Inserting and deleting nodes in a list (Part 1 of 8)

Inserting and deleting nodes in a list (Part 2 of 8)

Inserting and deleting nodes in a list (Part 3 of 8)

Inserting a node in order in a list

reassigned
pointers

Inserting and deleting nodes in a list (Part 4 of 8)

Inserting and deleting nodes in a list (Part 5 of 8)

Deleting a node from a list

tempPtr is used to free
the memory allocated to
the node that stores 'C'

tempPtr	is	a	local	
automatic	variable

Inserting and deleting nodes in a list (Part 6 of 8)

Inserting and deleting nodes in a list (Part 7 of 8)

Inserting and deleting nodes in a list (Part 8 of 8)

Sample output for the program (Part 1 of 2)

Sample output for the program (Part 2 of 2)

Analysis of the linked list
OPERATION

add to start of list
add to end of list

add at given index

find an object
remove first element
remove last element

remove at given index

size

RUNTIME (Big-O)

Analysis of the linked list (insert) – Part 1 of 2

O(1)

Analysis of the linked list (insert) – Part 2 of 2

O(n)

O(1)

Insert -- runtime: O(1)+O(n)+O(1) = O(n)

Analysis of the linked list (delete) – Part 1 of 2

O(1)

O(1)

O(n)

Analysis of the linked list (delete) – Part 2 of 2

O(1)

Delete -- runtime: O(1)+O(n)+O(1) = O(n)

Analysis of the linked list
OPERATION

add to start of list
add to end of list

add at given index

find an object
remove first element
remove last element

remove at given index

size

RUNTIME (Big-O)

O(1)
 O(n)
 O(n)

O(n)
 O(1)
 O(n)
 O(n)

 O(1)

Chapter 8 of the CERT Secure C Coding
Standard
•  Chapter 8 of the CERT Secure C Coding

Standard is dedicated to memory-management
recommendations and rules—many apply to the
uses of pointers and dynamic-memory allocation
presented in this chapter.

•  For more information, visit
www.securecoding.cert.org.

Secure C Programming

•  Pointers should not be left uninitialized
•  They should be assigned either NULL or the

address of a valid item in memory
•  When you use free to deallocate dynamically

allocated memory, the pointer passed to free is
not assigned a new value, so it still points to the
memory location where the dynamically
allocated memory used to be

Summary
(Secure C Programming)

•  Using a pointer that’s been freed can lead to
program crashes and security vulnerabilities

•  When you free dynamically allocated memory,
you should immediately assign the pointer either
NULL or a valid address

•  We chose not to do this for local pointer
variables that immediately go out of scope after
a call to free

Summary
(Secure C Programming)

•  Undefined behavior occurs when you attempt to
use free to deallocate dynamic memory that was
already deallocated—this is known as a “double
free vulnerability”

•  To ensure that you don’t attempt to deallocate
the same memory more than once, immediately
set a pointer to NULL after the call to free—
attempting to free a NULL pointer has no effect

Summary
(Secure C Programming)

•  Function malloc returns NULL if it’s unable to
allocate the requested memory

•  You should always ensure that malloc did not
return NULL before attempting to use the pointer
that stores malloc’s return value

Summary
(Secure C Programming)

