
Chapter

3

LINKED LISTS

In this chapter, the list data structure is presented. This structure can be used
as the basis for the implementation of other data structures (stacks, queues
etc.). The basic linked list can be used without modification in many programs.
However, some applications require enhancements to the linked list design.
These enhancements fall into three broad categories and yield variations on
linked lists that can be used in any combination: circular linked lists, double
linked lists and lists with header nodes.

Linked lists and arrays are similar since they both store collections of data. Array is the
most common data structure used to store collections of elements. Arrays are
convenient to declare and provide the easy syntax to access any element by its index
number. Once the array is set up, access to any element is convenient and fast. The
disadvantages of arrays are:

 The size of the array is fixed. Most often this size is specified at compile time. This

makes the programmers to allocate arrays, which seems "large enough" than
required.

 Inserting new elements at the front is potentially expensive because existing
elements need to be shifted over to make room.

 Deleting an element from an array is not possible.

Linked lists have their own strengths and weaknesses, but they happen to be strong
where arrays are weak. Generally array's allocates the memory for all its elements in
one block whereas linked lists use an entirely different strategy. Linked lists allocate
memory for each element separately and only when necessary.

Here is a quick review of the terminology and rules of pointers. The linked list code
will depend on the following functions:

malloc() is a system function which allocates a block of memory in the "heap" and
returns a pointer to the new block. The prototype of malloc() and other heap functions
are in stdlib.h. malloc() returns NULL if it cannot fulfill the request. It is defined by:

void *malloc (number_of_bytes)

Since a void * is returned the C standard states that this pointer can be converted to
any type. For example,

char *cp;
cp = (char *) malloc (100);

Attempts to get 100 bytes and assigns the starting address to cp. We can also use the
sizeof() function to specify the number of bytes. For example,

int *ip;
ip = (int *) malloc (100*sizeof(int));

free() is the opposite of malloc(), which de-allocates memory. The argument to free()
is a pointer to a block of memory in the heap a pointer which was obtained by a
malloc() function. The syntax is:

free (ptr);

The advantage of free() is simply memory management when we no longer need a
block.

3.1. Linked List Concepts:

A linked list is a non-sequential collection of data items. It is a dynamic data structure.
For every data item in a linked list, there is an associated pointer that would give the
memory location of the next data item in the linked list.

The data items in the linked list are not in consecutive memory locations. They may be
anywhere, but the accessing of these data items is easier as each data item contains
the address of the next data item.

Advantages of linked lists:

Linked lists have many advantages. Some of the very important advantages are:

1. Linked lists are dynamic data structures. i.e., they can grow or shrink during
the execution of a program.

2. Linked lists have efficient memory utilization. Here, memory is not pre-
allocated. Memory is allocated whenever it is required and it is de-allocated
(removed) when it is no longer needed.

3. Insertion and Deletions are easier and efficient. Linked lists provide flexibility
in inserting a data item at a specified position and deletion of the data item
from the given position.

4. Many complex applications can be easily carried out with linked lists.

Disadvantages of linked lists:

1. It consumes more space because every node requires a additional pointer to
store address of the next node.

2. Searching a particular element in list is difficult and also time consuming.

3.2. Types of Linked Lists:

Basically we can put linked lists into the following four items:

1. Single Linked List.

2. Double Linked List.

3. Circular Linked List.

4. Circular Double Linked List.

A single linked list is one in which all nodes are linked together in some sequential
manner. Hence, it is also called as linear linked list.

A double linked list is one in which all nodes are linked together by multiple links which
helps in accessing both the successor node (next node) and predecessor node (previous
node) from any arbitrary node within the list. Therefore each node in a double linked
list has two link fields (pointers) to point to the left node (previous) and the right node
(next). This helps to traverse in forward direction and backward direction.

A circular linked list is one, which has no beginning and no end. A single linked list can
be made a circular linked list by simply storing address of the very first node in the link
field of the last node.

A circular double linked list is one, which has both the successor pointer and
predecessor pointer in the circular manner.

Comparison between array and linked list:

ARRAY LINKED LIST

Size of an array is fixed Size of a list is not fixed

Memory is allocated from stack Memory is allocated from heap

It is necessary to specify the number of It is not necessary to specify the
elements during declaration (i.e., during number of elements during declaration
compile time). (i.e., memory is allocated during run

 time).
It occupies less memory than a linked It occupies more memory.
list for the same number of elements.

Inserting new elements at the front is Inserting a new element at any position

potentially expensive because existing can be carried out easily.
elements need to be shifted over to

make room.

Deleting an element from an array is Deleting an element is possible.
not possible.

Trade offs between linked lists and arrays:

FEATURE ARRAYS LINKED LISTS

Sequential access efficient efficient

Random access efficient inefficient

Resigning inefficient efficient

Element rearranging inefficient efficient

Overhead per elements none 1 or 2 links

Applications of linked list:

1. Linked lists are used to represent and manipulate polynomial. Polynomials are
expression containing terms with non zero coefficient and exponents. For
example:

P(x) = a0 X
n + a1 X

n-1 n-1 X + an

2. Represent very large numbers and operations of the large number such
as addition, multiplication and division.

3. Linked lists are to implement stack, queue, trees and graphs.

4. Implement the symbol table in compiler construction

3.3. Single Linked List:

A linked list allocates space for each element separately in its own block of memory
called a "node". The list gets an overall structure by using pointers to connect all its
nodes together like the links in a chain. Each node contains two fields; a "data" field to
store whatever element, and a "next" field which is a pointer used to link to the next
node. Each node is allocated in the heap using malloc(), so the node memory continues
to exist until it is explicitly de-allocated using free(). The front of the list is a pointer to

.

A single linked list is shown in figure 3.2.1.

 HEAP

10

200

20 300

The start
100 200

pointer holds

Stores the next

the address

 the data. node address.

of the first
node of the
list.

30 400

40 X

 400

The next field of the
last node is NULL.

Figure 3.2.1. Single Linked List

The beginning of the linked list is stored in a "start" pointer which points to the first
node. The first node contains a pointer to the second node. The second node contains a
pointer to the third node, ... and so on. The last node in the list has its next field set to
NULL to mark the end of the list. Code can access any node in the list by starting at the
start and following the next pointers.

The start pointer is an ordinary local pointer variable, so it is drawn separately on the
left top to show that it is in the stack. The list nodes are drawn on the right to show
that they are allocated in the heap.

Implementation of Single Linked List:

Before writing the code to build the above list, we need to create a start node, used to
create and access other nodes in the linked list. The following structure definition will
do (see figure 3.2.2):

 Creating a structure with one data item and a next pointer, which will be pointing
to next node of the list. This is called as self-referential structure.

 Initialise the start pointer to be NULL.

struct slinklist
{

int data;
struct slinklist* next;

};

typedef struct slinklist node;

node *start = NULL;

node: data next

 start

Empty list: NULL

Figure 3.2.2. Structure definition, single link node and empty list

The basic operations in a single linked list are:

 Creation.

 Insertion.

 Deletion.

 Traversing.

Creating a node for Single Linked List:

Creating a singly linked list starts with creating a node. Sufficient memory has to be
allocated for creating a node. The information is stored in the memory, allocated by
using the malloc() function. The function getnode(), is used for creating a node, after
allocating memory for the structure of type node, the information for the item (i.e.,
data) has to be read from the user, set next field to NULL and finally returns the
address of the node. Figure 3.2.3 illustrates the creation of a node for single linked list.

node* getnode()
{

node* newnode;
newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: "); scanf("%d",
&newnode -> data);
newnode -> next = NULL;
return newnode;

}

Figure 3.2.3. new node with a value of 10

newnode
10 X

100

The following steps are to be followed to create

 Get the new node using getnode().

newnode = getnode();

 If the list is empty, assign new node as start.
start = newnode;

 If the list is not empty, follow the steps given below:

 The next field of the new node is made to point the first node (i.e.
start node) in the list by assigning the address of the first node.

 The start pointer is made to point the new node by assigning the
address of the new node.

Figure 3.2.4 shows 4 items in a single linked list stored at different locations in
memory.

start

100

10 200

20 300

30 400

40 X

100 200 300 400

Figure 3.2.4. Single Linked List with 4 nodes

vo id createlist(int n)
{

int i;
node * new node;
node *temp;
for(i = 0; i < n ; i+ +)
{

new node = getnode();
if(start = = NULL)
{

start = new node;
}
else
{

temp = start;
while(temp - > next != NULL)

temp = temp - > next;
temp - > next = new node;

}
}

}

Insertion of a Node:

One of the most primitive operations that can be done in a singly linked list is the
insertion of a node. Memory is to be allocated for the new node (in a similar way that is
done while creating a list) before reading the data. The new node will contain empty
data field and empty next field. The data field of the new node is then stored with the
information read from the user. The next field of the new node is assigned to NULL. The
new node can then be inserted at three different places namely:

 Inserting a node at the beginning.

 Inserting a node at the end.

 Inserting a node at intermediate position.

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the list:

 Get the new node using getnode().
newnode = getnode();

 If the list is empty then start = newnode.

 If the list is not empty, follow the steps given below:
newnode -> next = start;
start = newnode;

Figure 3.2.5 shows inserting a node into the single linked list at the beginning.

start

500

10 200

20 300

30 400

40 X

 100 200 300 400

5

100

500

Figure 3.2.5. Inserting a node at the beginning

The function insert_at_beg(), is used for inserting a node at the beginning

void insert_at_beg()
{

node *newnode;
newnode = getnode();
if(start == NULL)
{

start = newnode;
}
else
{

newnode -> next = start;
start = newnode;

}
}

Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

 Get the new node using getnode()

newnode = getnode();

 If the list is empty then start = newnode.

 If the list is not empty follow the steps given below:
temp = start;
while(temp -> next != NULL)

temp = temp -> next;
temp -> next = newnode;

Figure 3.2.6 shows inserting a node into the single linked list at the end.

start

100

10 200

20 300

30 400

40 500

50

Figure 3.2.6. Inserting a node at the end.

The function insert_at_end(), is used for inserting a node at the end.

void insert_at_end()
{

node *newnode, *temp;
newnode = getnode();
if(start == NULL)
{

start = newnode;
}
else
{

temp = start;
while(temp -> next != NULL)

temp = temp -> next;
temp -> next = newnode;

}
}

Inserting a node at intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the
list:

 Get the new node using getnode().

newnode = getnode();

 Ensure that the specified position is in between first node and last node. If
not, specified position is invalid. This is done by countnode() function.

 Store the starting address (which is in start pointer) in temp and prev
pointers. Then traverse the temp pointer upto the specified position followed
by prev pointer.

 After reaching the specified position, follow the steps given below:
prev -> next = newnode;
newnode -> next = temp;

 Let the intermediate position be 3.

Figure 3.2.7 shows inserting a node into the single linked list at a specified intermediate
position other than beginning and end.

start temp

100

 10 200 20 500 30 400 40 X

50 300

 500 new node

Figure 3.2.7. Inserting a node at an intermediate position.

The function insert_at_mid(), is used for inserting a node in the intermediate position.

void insert_at_mid()
{

node *newnode, *temp, *prev;
int pos, nodectr, ctr = 1;
newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);
nodectr = countnode(start);
if(pos > 1 && pos < nodectr)
{

temp = prev = start;
while(ctr < pos)
{

prev = temp;
temp = temp -> next;
ctr++;

}
prev -> next = newnode;
newnode -> next = temp;

}
else
{

printf("position %d is not a middle position", pos);
}

}

Deletion of a node:

Another primitive operation that can be done in a singly linked list is the deletion of a
node. Memory is to be released for the node to be deleted. A node can be deleted from
the list from three different places namely.

 Deleting a node at the beginning.

 Deleting a node at the end.

 Deleting a node at intermediate position.

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

 If the list is not empty, follow the steps given below:
temp = start;
start = start -> next;
free(temp);

Figure 3.2.8 shows deleting a node at the beginning of a single linked list.

start

200

X

 10 200 20 300 30 400 40

temp
 200 300 400

Figure 3.2.8. Deleting a node at the beginning.

The function delete_at_beg(), is used for deleting the first node in the list.

void delete_at_beg()
{

node *temp;
if(start == NULL)
{

printf("\n No nodes are exist..");
return ;

}
else
{

temp = start;
start = temp -> next;
free(temp);
printf("\n Node deleted ");

}
}

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:

 If the list is not empty, follow the steps given below:

temp = prev = start;
while(temp -> next != NULL)
{

prev = temp;
temp = temp -> next;

}
prev -> next = NULL;
free(temp);

Figure 3.2.9 shows deleting a node at the end of a single linked list.

start
100

10 200

20 300

30 X

 40

100 200 300

Figure 3.2.9. Deleting a node at the end.

The function delete_at_last(), is used for deleting the last node in the list.

void delete_at_last()
{

node *temp, *prev;
if(start == NULL)
{

printf("\n Empty List..");
return ;

}
else
{

temp = start;
prev = start;
while(temp -> next != NULL)
{

prev = temp;
temp = temp -> next;

}
prev -> next = NULL;
free(temp);
printf("\n Node deleted ");

}
}

Deleting a node at Intermediate position:

The following steps are followed, to delete a node from an intermediate position in the
list (List must contain more than two node).

 If the list is not empty, follow the steps given below.
if(pos > 1 && pos < nodectr)
{

temp = prev = start;
ctr = 1;
while(ctr < pos)
{

prev = temp;
temp = temp -> next;
ctr++;

}
prev -> next = temp -> next;
free(temp);
printf("\n node deleted..");

}

Figure 3.2.10 shows deleting a node at a specified intermediate position other than
beginning and end from a single linked list.

Start

100

10 30 0

20 30 0
30 40 0

40 X

Figure 3.2.10. Deleting a node at an intermediate position.

The function delete_at_mid(), is used for deleting the intermediate node in the list.

void delete_at_mid()
{

int ctr = 1, pos, nodectr;
node *temp, *prev;
if(start == NULL)
{

printf("\n Empty List..");
return ;

}
else
{

printf("\n Enter position of node to delete: ");
scanf("%d", &pos);
nodectr = countnode(start);
if(pos > nodectr)
{

printf("\nThis node doesnot exist");
}

if(pos > 1 && pos < nodectr)
{

temp = prev = start;
while(ctr < pos)
{

prev = temp;
temp = temp -> next;
ctr ++;

}
prev -> next = temp -> next;
free(temp);
printf("\n Node deleted..");

}
else
{

printf("\n Invalid position..");
getch();

}

}
}

Traversal and displaying a list (Left to Right):

To display the information, you have to traverse (move) a linked list, node by node
from the first node, until the end of the list is reached. Traversing a list involves the
following steps:

 Assign the address of start pointer to a temp pointer.

 Display the information from the data field of each node.

The function traverse() is used for traversing and displaying the information stored in
the list from left to right.

void traverse()
{

node *temp;
temp = start;
printf("\n The contents of List (Left to Right):
\n"); if(start == NULL)

printf("\n Empty List");
else
{

while (temp != NULL)
{

printf("%d ->", temp -> data);
temp = temp -> next;

}
}
printf("X");

}

Alternatively there is another way to traverse and display the information. That is in
reverse order. The function rev_traverse(), is used for traversing and displaying the
information stored in the list from right to left.

void rev_traverse(no de *st)
{

if(st = = NULL)
{

return;
}
else
{

rev_traverse(st - > next);
printf("%d - >", st - > data);

}
}

Counting the Number of Nodes:

The following code will count the number of nodes exist in the list using recursion.

int countnode(node *st)
{

if(st = = NULL)
return 0;

else
return(1 + countnode(st - > next));

}

3.3.1. Source Code for the Implementation of Single Linked List:

include <stdio.h>
include <conio.h>
include <stdlib.h>

struct slinklist
{

int data;
struct slinklist *next;

};

typedef struct slinklist node;

node *start = NULL;
int menu()
{

int ch;
clrscr();
printf("\n 1.Create a list ");
printf("\n--------------------------");
printf("\n 2.Insert a node at beginning ");
printf("\n 3.Insert a node at end");
printf("\n 4.Insert a node at middle");
printf("\n--------------------------");
printf("\n 5.Delete a node from beginning");
printf("\n 6.Delete a node from Last");
printf("\n 7.Delete a node from Middle");
printf("\n--------------------------");
printf("\n 8.Traverse the list (Left to Right)");
printf("\n 9.Traverse the list (Right to Left)");

printf("\n--------------------------");
printf("\n 10. Count nodes ");
printf("\n 11. Exit ");
printf("\n\n Enter your choice: ");
scanf("%d",&ch);
return ch;

}

node* getnode()
{

node * newnode;
newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");
scanf("%d", &newnode -> data);
newnode -> next = NULL;
return newnode;

}

int countnode(node *ptr)
{

int count=0;
while(ptr != NULL)
{

count++;
ptr = ptr -> next;

}
return (count);

}

void createlist(int n)
{

int i;
node *newnode;
node *temp;
for(i = 0; i < n; i++)
{

newnode = getnode();
if(start == NULL)
{

start = newnode;
}
else
{

temp = start;
while(temp -> next != NULL)

temp = temp -> next;
temp -> next = newnode;

}
}

}

void traverse()
{

node *temp;
temp = start;
printf("\n The contents of List (Left to Right): \n");
if(start == NULL)
{

printf("\n Empty List");
return;

}
else
{

while(temp != NULL)
{

printf("%d-->", temp -> data);
temp = temp -> next;

}
}
printf(" X ");

}

void rev_traverse(node *start)
{

if(start == NULL)
{

return;
}
else
{

rev_traverse(start -> next);
printf("%d -->", start -> data);

}
}

void insert_at_beg()
{

node *newnode;
newnode = getnode();
if(start == NULL)
{

start = newnode;
}
else
{

newnode -> next = start;
start = newnode;

}
}

void insert_at_end()
{

node *newnode, *temp;
newnode = getnode();
if(start == NULL)
{

start = newnode;
}
else
{

temp = start;
while(temp -> next != NULL)

temp = temp -> next;
temp -> next = newnode;

}
}

void insert_at_mid()
{

node *newnode, *temp, *prev;
int pos, nodectr, ctr = 1;
newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);
nodectr = countnode(start);

if(pos > 1 && pos < nodectr)
{

temp = prev = start;
while(ctr < pos)
{

prev = temp;
temp = temp -> next;
ctr++;

}
prev -> next = newnode;
newnode -> next = temp;

}
else

printf("position %d is not a middle position", pos);
}

void delete_at_beg()
{

node *temp;
if(start == NULL)
{

printf("\n No nodes are exist..");
return ;

}
else
{

temp = start;
start = temp -> next;
free(temp);
printf("\n Node deleted ");

}
}

void delete_at_last()
{

node *temp, *prev;
if(start == NULL)
{

printf("\n Empty List..");
return ;

}
else
{

temp = start;
prev = start;
while(temp -> next != NULL)
{

prev = temp;
temp = temp -> next;

}
prev -> next = NULL;
free(temp);
printf("\n Node deleted ");

}
}

void delete_at_mid()
{

int ctr = 1, pos, nodectr;
node *temp, *prev;
if(start == NULL)
{

printf("\n Empty List..");

return ;
}
else
{

printf("\n Enter position of node to delete: ");
scanf("%d", &pos);
nodectr = countnode(start);
if(pos > nodectr)
{

printf("\nThis node doesnot exist");

}
if(pos > 1 && pos < nodectr)
{

temp = prev = start;
while(ctr < pos)
{

prev = temp;
temp = temp -> next;
ctr ++;

}
prev -> next = temp -> next;
free(temp);
printf("\n Node deleted..");

}
else
{

printf("\n Invalid position..");
getch();

}
}

}

void main(void)
{

int ch, n;
clrscr();
while(1)
{

ch = menu();
switch(ch)
{
case 1:

if(start == NULL)
{

printf("\n Number of nodes you want to create: ");
scanf("%d", &n);
createlist(n);
printf("\n List created..");

}
else

printf("\n List is already created..");
break;

case 2:
insert_at_beg();
break;

case 3:
insert_at_end();
break;

case 4:
insert_at_mid();
break;

case 5:
delete_at_beg();
break;

case 6:
delete_at_last();
break;

case 7:
delete_at_mid();
break;

case 8:
traverse();
break;

case 9:
printf("\n The contents of List (Right to Left): \n");
rev_traverse(start);
printf(" X ");
break;

case 10:
printf("\n No of nodes : %d ", countnode(start));
break;

case 11 :
exit(0);

}
getch();

}
}

3.4. Using a header node:

A header node is a special dummy node found at the front of the list. The use of header
node is an alternative to remove the first node in a list. For example, the picture below
shows how the list with data 10, 20 and 30 would be represented using a linked list
without and with a header node:

100

10 200

20 300

30 X

100 200 300

Single Linke d List w it ho ut a he a der no de

sta rt

400

100

10 200

20 300

30 X

400 100 200 300

Single Linked List with header node

Note that if your linked lists do include a header node, there is no need for the special
case code given above for the remove operation; node n can never be the first node in
the list, so there is no need to check for that case. Similarly, having a header node can
simplify the code that adds a node before a given node n.

Note that if you do decide to use a header node, you must remember to initialize an
empty list to contain one (dummy) node, you must remember not to include the header
node in the count of "real" nodes in the list.

It is also useful when information other than that found in each node of the list is
needed. For example, imagine an application in which the number of items in a list is
often calculated. In a standard linked list, the list function to count the number of
nodes has to traverse the entire list every time. However, if the current length is
maintained in a header node, that information can be obtained very quickly.

3.5. Array based linked lists:

Another alternative is to allocate the nodes in blocks. In fact, if you know the maximum
size of a list a head of time, you can pre-allocate the nodes in a single array. The result
is a hybrid structure an array based linked list. Figure 3.5.1 shows an example of null
terminated single linked list where all the nodes are allocated contiguously in an array.

start

a

100

b

a 200

b 300

C X

100

200

c

Conceptual structure

d

Implementation

Figure 3.5.1. An array based linked list

3.6. Double Linked List:

A double linked list is a two-way list in which all nodes will have two links. This helps in
accessing both successor node and predecessor node from the given node position. It
provides bi-directional traversing. Each node contains three fields:

 Left link.
 Data.
 Right link.

The left link points to the predecessor node and the right link points to the successor
node. The data field stores the required data.

Many applications require searching forward and backward thru nodes of a list.
For example searching for a name in a telephone directory would need forward
and backward scanning thru a region of the whole list.

The basic operations in a double linked list are:

 Creation.
 Insertion.
 Deletion.
 Traversing.

A double linked list is shown in figure 3.3.1.

Stores the previous

node address.

start

X

 200

100

20 300

200 30 X

The start 100 200

pointer holds

Stores the next

the address

of the first last node is NULL.

node of the
list.

Figure 3.3.1. Double Linked List

The beginning of the double linked list is stored in a "start" pointer which points to the
set to NULL.

The following code gives the structure definition:

struct dlinklist

{ node: left data right

struct dlinklist *left;

int data;

struct dlinklist *right;

}; start

typedef struct dlinklist node; Empty list: NULL

node *start = NULL;

Figure 3.4.1. Structure definition, double link node and empty list

Creating a node for Double Linked List:

Creating a double linked list starts with creating a node. Sufficient memory has to be
allocated for creating a node. The information is stored in the memory, allocated by
using the malloc() function. The function getnode(), is used for creating a node, after
allocating memory for the structure of type node, the information for the item (i.e.,
data) has to be read from the user and set left field to NULL and right field also set to
NULL (see figure 3.2.2).

node* getnode()

{

node* newnode;

newnode = (node *) malloc(sizeof(node));

printf("\n Enter data: "); X 10 X

scanf("%d", &newnode -> data);

newnode -> left = NULL;

newnode -> right = NULL;

return newnode;

}

The following

 Get the new node using getnode().

newnode =getnode();

 If the list is empty then start = newnode.

 If the list is not empty, follow the steps given below:

 The left field of the new node is made to point the previous node.

 The previous nodes right field must be assigned with address of the
new node.

void createlist(int n)
{

int i;
node * new node;
node *tem p;
for(i = 0; i < n; i+ +)
{

new node = getnode();
if(start = = NULL)
{

start = new node;
}
else
{

temp = start;
while(temp - > right)

temp = temp - > right;
tem p - > right = new no de;
new node - > left = temp;

}
}

}

Figure 3.4.3 shows 3 items in a double linked list stored at different locations.

start
100

X 10 200

100 20 300

200 30 X

 200

Figure 3.4.3. Double Linked List with 3 nodes

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the list:

 Get the new node using getnode().

newnode=getnode();

 If the list is empty then start = newnode.

 If the list is not empty, follow the steps given below:

newnode -> right = start;
start -> left = newnode;
start = newnode;

The function dbl_insert_beg(), is used for inserting a node at the beginning. Figure
3.4.4 shows inserting a node into the double linked list at the beginning.

start
400

400 10 200

100 20 300

200 30 X

 200

X 40 100
400

Figure 3.4.4. Inserting a node at the beginning

Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

 Get the new node using getnode()

newnode=getnode();

 If the list is empty then start = newnode.

 If the list is not empty follow the steps given below:

temp = start;
while(temp -> right != NULL)

temp = temp -> right;
temp -> right = newnode;
newnode -> left = temp;

The function dbl_insert_end(), is used for inserting a node at the end. Figure 3.4.5
shows inserting a node into the double linked list at the end.

start
100

X 10 200

100 20 300

200 30 400

 200

300 40 X

400

Figure 3.4.5. Inserting a node at the end

Inserting a node at an intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the
list:

 Get the new node using getnode().

newnode=getnode();

 Ensure that the specified position is in between first node and last node. If
not, specified position is invalid. This is done by countnode() function.

 Store the starting address (which is in start pointer) in temp and prev
pointers. Then traverse the temp pointer upto the specified position followed
by prev pointer.

 After reaching the specified position, follow the steps given below:

newnode -> left = temp;
newnode -> right = temp -> right;
temp -> right -> left = newnode;
temp -> right = newnode;

The function dbl_insert_mid(), is used for inserting a node in the intermediate position.
Figure 3.4.6 shows inserting a node into the double linked list at a specified
intermediate position other than beginning and end.

 Start

 100 40 200

 100

 400

400 20 300

 X 10 400

100
 200

 200 30

 300

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

 If the list is not empty, follow the steps given below:

temp = start;
start = start -> right;
start -> left = NULL;
free(temp);

The function dbl_delete_beg(), is used for deleting the first node in the list. Figure
3.4.6 shows deleting a node at the beginning of a double linked list.

start
200

X

 10

200

X 20 300

200 30 X

 200

Figure 3.4.6. Deleting a node at beginning

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:

 If the list is not empty, follow the steps given below:

temp = start;
while(temp -> right != NULL)
{

temp = temp -> right;
}
temp -> left -> right = NULL;
free(temp);

The function dbl_delete_last(), is used for deleting the last node in the list. Figure 3.4.7
shows deleting a node at the end of a double linked list.

start
100

X

X

10 200

100 20

 200

Figure 3.4.7. Deleting a node at the end

Deleting a node at Intermediate position:

The following steps are followed, to delete a node from an intermediate position in the
list (List must contain more than two nodes).

 If the list is not empty, follow the steps given below:

 Get the position of the node to delete.

 Ensure that the specified position is in between first node and last
node. If not, specified position is invalid.

 Then perform the following steps:
if(pos > 1 && pos < nodectr)
{

temp = start;
i = 1;
while(i < pos)
{

temp = temp -> right;
i++;

}
temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(temp);
printf("\n node deleted..");

}

The function delete_at_mid(), is used for deleting the intermediate node in the list.
Figure 3.4.8 shows deleting a node at a specified intermediate position other than
beginning and end from a double linked list.

Start

100

 X 10 300 100 20 300 100 30 X

 100 200

Figure 3.4.8 Deleting a node at an intermediate position

Traversal and displaying a list (Left to Right):

To display the information, you have to traverse the list, node by node from the first
node, until the end of the list is reached. The function traverse_left_right() is used for
traversing and displaying the information stored in the list from left to right.

The following steps are followed, to traverse a list from left to right:

 If the list is not empty, follow the steps given below:

temp = start;
while(temp != NULL)
{

print temp -> data;
temp = temp -> right;

}

Traversal and displaying a list (Right to Left):

To display the information from right to left, you have to traverse the list, node by node
from the first node, until the end of the list is reached. The function
traverse_right_left() is used for traversing and displaying the information stored in the
list from right to left. The following steps are followed, to traverse a list from right to
left:

 If the list is not empty, follow the steps given below:
temp = start;
while(temp -> right != NULL)

temp = temp -> right;
while(temp != NULL)
{

print temp -> data;
temp = temp -> left;

}

Counting the Number of Nodes:

The following code will count the number of nodes exist in the list (using recursion).

int countnode(node *start)
{

if(start = = NULL)
return 0;

else
return(1 + countnode(start - >right));

}

3.5. A Complete Source Code for the Implementation of Double Linked List:

#include <stdio.h>
#include <stdlib.h>
#include <conio.h>

struct dlinklist
{

struct dlinklist *left;
int data;
struct dlinklist *right;

};

typedef struct dlinklist node;
node *start = NULL;

node* getnode()
{

node * newnode;
newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");
scanf("%d", &newnode -> data);
newnode -> left = NULL;
newnode -> right = NULL;
return newnode;

}

int countnode(node *start)
{

if(start == NULL)
return 0;

else
return 1 + countnode(start -> right);

}

int menu()
{

int ch;
clrscr();
printf("\n 1.Create");
printf("\n------------------------------");
printf("\n 2. Insert a node at beginning ");
printf("\n 3. Insert a node at end");
printf("\n 4. Insert a node at middle");
printf("\n------------------------------");
printf("\n 5. Delete a node from beginning");
printf("\n 6. Delete a node from Last");
printf("\n 7. Delete a node from Middle");
printf("\n------------------------------");
printf("\n 8. Traverse the list from Left to Right
"); printf("\n 9. Traverse the list from Right to
Left "); printf("\n------------------------------");
printf("\n 10.Count the Number of nodes in the list");
printf("\n 11.Exit ");
printf("\n\n Enter your choice: ");
scanf("%d", &ch);
return ch;

}

void createlist(int n)
{

int i;
node *newnode;
node *temp;
for(i = 0; i < n; i++)
{

newnode = getnode();
if(start == NULL)

start = newnode;
else
{

temp = start;
while(temp -> right)

temp = temp -> right;
temp -> right = newnode;
newnode -> left = temp;

}
}

}

void traverse_left_to_right()
{

node *temp;
temp = start;
printf("\n The contents of List: ");
if(start == NULL)

printf("\n Empty List");
else
{

while(temp != NULL)
{

printf("\t %d ", temp -> data);
temp = temp -> right;

}
}

}
void traverse_right_to_left()
{

node *temp;
temp = start;
printf("\n The contents of List: ");
if(start == NULL)

printf("\n Empty List");
else
{

while(temp -> right != NULL)
temp = temp -> right;

}
while(temp != NULL)
{

printf("\t%d", temp -> data);
temp = temp -> left;

}
}
void dll_insert_beg()
{

node *newnode;
newnode = getnode();
if(start == NULL)

start = newnode;
else
{

newnode -> right = start;
start -> left = newnode;
start = newnode;

}
}

void dll_insert_end()
{

node *newnode, *temp;
newnode = getnode();
if(start == NULL)

start = newnode;
else
{

temp = start;
while(temp -> right != NULL)

temp = temp -> right;
temp -> right = newnode;
newnode -> left = temp;

}
}

void dll_insert_mid()
{

node *newnode,*temp;
int pos, nodectr, ctr = 1;
newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);
nodectr = countnode(start);
if(pos - nodectr >= 2)
{

printf("\n Position is out of range..");
return;

}
if(pos > 1 && pos < nodectr)
{

temp = start;
while(ctr < pos - 1)
{

temp = temp -> right;
ctr++;

}
newnode -> left = temp;
newnode -> right = temp -> right;
temp -> right -> left = newnode;
temp -> right = newnode;

}
else

printf("position %d of list is not a middle position ", pos);
}

void dll_delete_beg()
{

node *temp;
if(start == NULL)
{

printf("\n Empty list");
getch();
return ;

}
else
{

temp = start;
start = start -> right;
start -> left = NULL;
free(temp);

}
}

void dll_delete_last()
{

node *temp;
if(start == NULL)
{

printf("\n Empty list");
getch();
return ;

}
else
{

temp = start;
while(temp -> right != NULL)

temp = temp -> right;
temp -> left -> right = NULL;
free(temp);
temp = NULL;

}
}

void dll_delete_mid()
{

int i = 0, pos, nodectr;
node *temp;
if(start == NULL)
{

printf("\n Empty List");
getch();
return;

}
else
{

printf("\n Enter the position of the node to delete: ");
scanf("%d", &pos);
nodectr = countnode(start);
if(pos > nodectr)
{

printf("\nthis node does not exist");
getch();
return;

}
if(pos > 1 && pos < nodectr)
{

temp = start;
i = 1;
while(i < pos)
{

temp = temp -> right;
i++;

}
temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(temp);
printf("\n node deleted..");

}
else
{

printf("\n It is not a middle position..");
getch();

}
}

}

void main(void)
{

int ch, n;
clrscr();
while(1)
{

ch = menu();
switch(ch)
{

case 1 :
printf("\n Enter Number of nodes to create: ");
scanf("%d", &n);
createlist(n);

printf("\n List created..");
break;

case 2 :
dll_insert_beg();
break;

case 3 :
dll_insert_end();
break;

case 4 :
dll_insert_mid();
break;

case 5 :
dll_delete_beg();
break;

case 6 :
dll_delete_last();
break;

case 7 :
dll_delete_mid();
break;

case 8 :
traverse_left_to_right();
break;

case 9 :
traverse_right_to_left();
break;

case 10 :

printf("\n Number of nodes: %d", countnode(start));
break;

case 11:
exit(0);

}
getch();

}
}

3.7. Circular Single Linked List:

It is just a single linked list in which the link field of the last node points back to the
address of the first node. A circular linked list has no beginning and no end. It is
necessary to establish a special pointer called start pointer always pointing to the first
node of the list. Circular linked lists are frequently used instead of ordinary linked list
because many operations are much easier to implement. In circular linked list no null
pointers are used, hence all pointers contain valid address.

A circular single linked list is shown in figure 3.6.1.

start
100

10 200

20 300

30 400

 40 100

 200 300 400

Figure 3.6.1. Circular Single Linked List

The basic operations in a circular single linked list are:

 Creation.
 Insertion.
 Deletion.
 Traversing.

The following steps

 Get the new node using getnode().

newnode = getnode();

 If the list is empty, assign new node as start.

start = newnode;

 If the list is not empty, follow the steps given below:

temp = start;
while(temp -> next != NULL)

temp = temp -> next;
temp -> next = newnode;

 newnode -> next = start;

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the
circular list:

 Get the new node using getnode().

newnode = getnode();

 If the list is empty, assign new node as start.

start = newnode;
newnode -> next = start;

 If the list is not empty, follow the steps given below:

last = start;
while(last -> next != start)

last = last -> next;
newnode -> next = start;
start = newnode;
last -> next = start;

The function cll_insert_beg(), is used for inserting a node at the beginning. Figure 3.6.2
shows inserting a node into the circular single linked list at the beginning.

start

500

10 200 20 300 30 400 40 500

100

5 100

500

Figure 3.6.2. Inserting a node at the beginning

Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

 Get the new node using getnode().

newnode = getnode();

 If the list is empty, assign new node as start.

start = newnode;
newnode -> next = start;

 If the list is not empty follow the steps given below:

temp = start;
while(temp -> next != start)

temp = temp -> next;
temp -> next = newnode;
newnode -> next = start;

The function cll_insert_end(), is used for inserting a node at the end.

Figure 3.6.3 shows inserting a node into the circular single linked list at the end.

start

100

10 200

20 300

30 400
40 500

50 100

Figure 3.6.3 Inserting a node at the end.

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

 If the list is not empty, follow the steps given below:

last = temp = start;
while(last -> next != start)

last = last -> next;
start = start -> next;
last -> next = start;

 After deleting the node, if the list is empty then start = NULL.

The function cll_delete_beg(), is used for deleting the first node in the list. Figure 3.6.4
shows deleting a node at the beginning of a circular single linked list.

start
200

40 200

10 20 0

20 30 0
30 40 0

temp
 200 300 400

Figure 3.6.4. Deleting a node at beginning.

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:

 If the list is not empty, follow the steps given below:

temp = start;
prev = start;
while(temp -> next != start)
{

prev = temp;
temp = temp -> next;

}
prev -> next = start;

 After deleting the node, if the list is empty then start = NULL.

The function cll_delete_last(), is used for deleting the last node in the list.

Figure 3.6.5 shows deleting a node at the end of a circular single linked list.

start
100

10 200

20 300

30 100

40 100

 100 200 300

Figure 3.6.5. Deleting a node at the end.

Traversing a circular single linked list from left to right:

The following steps are followed, to traverse a list from left to right:

 If

 If the list is not empty, follow the steps given below:

temp = start;
do
{

printf("%d ", temp -> data);
temp = temp -> next;

} while(temp != start);

3.7.1. Source Code for Circular Single Linked List:

include <stdio.h>
include <conio.h>
include <stdlib.h>

struct cslinklist
{

int data;
struct cslinklist *next;

};

typedef struct cslinklist node;

node *start = NULL;

int nodectr;

node* getnode()
{

node * newnode;
newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");
scanf("%d", &newnode -> data);
newnode -> next = NULL;
return newnode;

}

int menu()
{

int ch;
clrscr();
printf("\n 1. Create a list ");
printf("\n\n--------------------------");
printf("\n 2. Insert a node at beginning ");
printf("\n 3. Insert a node at end");
printf("\n 4. Insert a node at middle");
printf("\n\n--------------------------");
printf("\n 5. Delete a node from beginning");
printf("\n 6. Delete a node from Last");
printf("\n 7. Delete a node from Middle");
printf("\n\n--------------------------");
printf("\n 8. Display the list");
printf("\n 9. Exit");
printf("\n\n--------------------------");
printf("\n Enter your choice: ");
scanf("%d", &ch);
return ch;

}

void createlist(int n)
{

int i;
node *newnode;
node *temp;
nodectr = n;
for(i = 0; i < n ; i++)
{

newnode = getnode();
if(start == NULL)
{

start = newnode;
}
else
{

temp = start;
while(temp -> next != NULL)

temp = temp -> next;
temp -> next = newnode;

}
}
newnode ->next = start;

/* last node is pointing to starting node */

}

void display()
{

node *temp;
temp = start;
printf("\n The contents of List (Left to Right): ");
if(start == NULL)

printf("\n Empty List");
else
{

do
{

printf("\t %d ", temp -> data);
temp = temp -> next;

} while(temp !=
start); printf(" X ");

}
}

void cll_insert_beg()
{

node *newnode, *last;
newnode = getnode();
if(start == NULL)
{

start = newnode;
newnode -> next = start;

}
else
{

last = start;
while(last -> next != start)

last = last -> next;
newnode -> next = start;
start = newnode;
last -> next = start;

}
printf("\n Node inserted at beginning..");
nodectr++;

}

void cll_insert_end()
{

node *newnode, *temp;
newnode = getnode();
if(start == NULL)
{

start = newnode;
newnode -> next = start;

}
else
{

temp = start;
while(temp -> next != start)

temp = temp -> next;
temp -> next = newnode;
newnode -> next = start;

}
printf("\n Node inserted at end..");
nodectr++;

}

void cll_insert_mid()
{

node *newnode, *temp, *prev;
int i, pos ;
newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);
if(pos > 1 && pos < nodectr)
{

temp = start;
prev = temp;
i = 1;
while(i < pos)
{

prev = temp;
temp = temp -> next;
i++;

}
prev -> next = newnode;
newnode -> next = temp;

nodectr++;
printf("\n Node inserted at middle..");

}
else
{

printf("position %d of list is not a middle position ", pos);
}

}

void cll_delete_beg()
{

node *temp, *last;
if(start == NULL)
{

printf("\n No nodes exist..");
getch();
return ;

}
else
{

last = temp = start;
while(last -> next != start)

last = last -> next;
start = start -> next;
last -> next = start;
free(temp);
nodectr--;
printf("\n Node deleted..");
if(nodectr == 0)

start = NULL;
}

}

void cll_delete_last()
{

node *temp,*prev;
if(start == NULL)
{

printf("\n No nodes exist..");
getch();
return ;

}
else
{

temp = start;
prev = start;
while(temp -> next != start)
{

prev = temp;
temp = temp -> next;

}
prev -> next = start;
free(temp);
nodectr--;
if(nodectr == 0)

start = NULL;
printf("\n Node deleted..");

}
}

void cll_delete_mid()
{

int i = 0, pos;
node *temp, *prev;

if(start == NULL)
{

printf("\n No nodes exist..");
getch();
return ;

}
else
{

printf("\n Which node to delete: ");
scanf("%d", &pos);
if(pos > nodectr)
{

printf("\nThis node does not exist");
getch();
return;

}
if(pos > 1 && pos < nodectr)
{

temp=start;
prev = start;
i = 0;
while(i < pos - 1)
{

prev = temp;
temp = temp -> next ;
i++;

}
prev -> next = temp -> next;
free(temp);
nodectr--;
printf("\n Node Deleted..");

}
else
{

printf("\n It is not a middle position..");
getch();

}
}

}

void main(void)
{

int result;
int ch, n;
clrscr();
while(1)
{

ch = menu();
switch(ch)
{

case 1 :
if(start == NULL)
{

printf("\n Enter Number of nodes to create: ");
scanf("%d", &n);
createlist(n);
printf("\nList created..");

}

else
printf("\n List is already Exist..");

break;
case 2 :

cll_insert_beg();
break;

case 3 :
cll_insert_end();
break;

case 4 :
cll_insert_mid();
break;

case 5 :
cll_delete_beg();
break;

case 6 :
cll_delete_last();
break;

case 7 :
cll_delete_mid();
break;

case 8 :
display();
break;

case 9 :
exit(0);

}
getch();

}
}

3.8. Circular Double Linked List:

A circular double linked list has both successor pointer and predecessor pointer in
circular manner. The objective behind considering circular double linked list is to
simplify the insertion and deletion operations performed on double linked list. In
circular double linked list the right link of the right most node points back to the start
node and left link of the first node points to the last node. A circular double linked list is
shown in figure 3.8.1.

100

start
300 10 200

100 20 300

200 30 100

 100 200

Figure 3.8.1. Circular Double Linked List

The basic operations in a circular double linked list are:

 Creation.
 Insertion.
 Deletion.
 Traversing.

The following steps are to be followed to create

 Get the new node using getnode().

newnode = getnode();

 If the list is empty, then do the following
start = newnode;
newnode -> left = start;
newnode ->right = start;

 If the list is not empty, follow the steps given below:
newnode -> left = start -> left;
newnode -> right = start; start
-> left->right = newnode; start
-> left = newnode;

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the list:

 Get the new node using getnode().
newnode=getnode();

 If the list is empty, then
start = newnode;
newnode -> left = start;
newnode -> right = start;

 If the list is not empty, follow the steps given

below: newnode -> left = start -> left;
newnode -> right = start; start -
> left -> right = newnode; start
-> left = newnode;
start = newnode;

The function cdll_insert_beg(), is used for inserting a node at the beginning. Figure
3.8.2 shows inserting a node into the circular double linked list at the beginning.

start
400

400

10 200

100 20 300

200 30 400

 200

300 40

100

400

Figure 3.8.2. Inserting a node at the beginning

Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

 Get the new node using getnode()

newnode=getnode();

 If the list is empty, then
start = newnode;
newnode -> left = start;
newnode -> right = start;

 If the list is not empty follow the steps given below:

newnode -> left = start -> left;
newnode -> right = start; start -
> left -> right = newnode; start
-> left = newnode;

The function cdll_insert_end(), is used for inserting a node at the end. Figure 3.8.3
shows inserting a node into the circular linked list at the end.

start
100

400 10 200

100 20 300

200

30 400

 200 300

300

40 100

 400

Figure 3.8.3. Inserting a node at the end

Inserting a node at an intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the
list:

 Get the new node using getnode().

newnode=getnode();

 Ensure that the specified position is in between first node and last node. If
not, specified position is invalid. This is done by countnode() function.

 Store the starting address (which is in start pointer) in temp. Then traverse
the temp pointer upto the specified position.

 After reaching the specified position, follow the steps given below:
newnode -> left = temp;
newnode -> right = temp -> right;
temp -> right -> left = newnode;
temp -> right = newnode;
nodectr++;

The function cdll_insert_mid(), is used for inserting a node in the intermediate position.
Figure 3.8.4 shows inserting a node into the circular double linked list at a specified
intermediate position other than beginning and end.

 Start

100 100 40 200

400

300 10 400

400 20 300

 100 200

200 30 100

 300

Figure 3.8.4. Inserting a node at an intermediate position

Deleting a node at the beginning:

The following steps are followed, to delete a node at the beginning of the list:

 If the list is not empty, follow the steps given below:

temp = start;
start = start -> right;
temp -> left -> right = start;
start -> left = temp -> left;

The function cdll_delete_beg(), is used for deleting the first node in the list. Figure
3.8.5 shows deleting a node at the beginning of a circular double linked list.

start
200

 300 10 200 300 20 300 200 30 200
 200

Figure 3.8.5. Deleting a node at beginning

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:

 If the list is not empty, follow the steps given below:

temp = start;
while(temp -> right != start)
{

temp = temp -> right;
}
temp -> left -> right = temp -> right;
temp -> right -> left = temp -> left;

The function cdll_delete_last(), is used for deleting the last node in the list. Figure 3.8.6
shows deleting a node at the end of a circular double linked list.

start
100

 200 10 200 100 20 100 200 30 100

1
0
0

3
0
0

Figure 3.8.6. Deleting a node at the end

Deleting a node at Intermediate position:

The following steps are followed, to delete a node from an intermediate position in the
list (List must contain more than two node).

 If list is empty then display

 If the list is not empty, follow the steps given below:

 Get the position of the node to delete.

 Ensure that the specified position is in between first node and last
node. If not, specified position is invalid.

 Then perform the following steps:

if(pos > 1 && pos < nodectr)
{

temp = start;
i = 1;
while(i < pos)
{

temp = temp -> right ;
i++;

}
temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(temp);
printf("\n node deleted..");
nodectr--;

}

The function cdll_delete_mid(), is used for deleting the intermediate node in the list.

Figure 3.8.7 shows deleting a node at a specified intermediate position other than
beginning and end from a circular double linked list.

start
100

300 10 300

100 30 100

 100 20 300

 200

Figure 3.8.7. Deleting a node at an intermediate position

Traversing a circular double linked list from left to right:

The following steps are followed, to traverse a list from left to right:

 If list is empty

 If the list is not empty, follow the steps given below:
temp = start;
Print temp -> data;
temp = temp -> right;
while(temp != start)
{

print temp -> data;
temp = temp -> right;

}

The function cdll_display_left _right(), is used for traversing from left to right.

Traversing a circular double linked list from right to left:

The following steps are followed, to traverse a list from right to left:

 If the list is not empty, follow the steps given below:
temp = start;
do
{

temp = temp -> left;
print temp -> data;

} while(temp != start);

The function cdll_display_right_left(), is used for traversing from right to left.

3.8.1. Source Code for Circular Double Linked List:

include <stdio.h>
include <stdlib.h>
include <conio.h>

struct cdlinklist
{

struct cdlinklist *left;
int data;
struct cdlinklist *right;

};

typedef struct cdlinklist node;
node *start = NULL;
int nodectr;

node* getnode()
{

node * newnode;
newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");
scanf("%d", &newnode -> data);
newnode -> left = NULL;
newnode -> right = NULL;
return newnode;

}

int menu()
{

int ch;
clrscr();
printf("\n 1. Create ");
printf("\n\n--------------------------");
printf("\n 2. Insert a node at Beginning");
printf("\n 3. Insert a node at End");
printf("\n 4. Insert a node at Middle");
printf("\n\n--------------------------");
printf("\n 5. Delete a node from Beginning");
printf("\n 6. Delete a node from End");
printf("\n 7. Delete a node from Middle");
printf("\n\n--------------------------");
printf("\n 8. Display the list from Left to Right");
printf("\n 9. Display the list from Right to Left");
printf("\n 10.Exit");
printf("\n\n Enter your choice: ");
scanf("%d", &ch);
return ch;

}

void cdll_createlist(int n)
{

int i;
node *newnode, *temp;
if(start == NULL)
{

nodectr = n;
for(i = 0; i < n; i++)
{

newnode = getnode();
if(start == NULL)
{

start = newnode;
newnode -> left = start;
newnode ->right = start;

}
else
{

newnode -> left = start -> left;

newnode -> right = start;
start -> left->right = newnode;
start -> left = newnode;

}
}

}
else

printf("\n List already exists..");
}

void cdll_display_left_right()
{

node *temp;
temp = start;
if(start == NULL)

printf("\n Empty List");
else
{

printf("\n The contents of List: ");
printf(" %d ", temp -> data);
temp = temp -> right;
while(temp != start)
{

printf(" %d ", temp -> data);
temp = temp -> right;

}
}

}

void cdll_display_right_left()
{

node *temp;
temp = start;
if(start == NULL)

printf("\n Empty List");
else
{

printf("\n The contents of List: ");
do
{

temp = temp -> left;
printf("\t%d", temp -> data);

} while(temp != start);
}

}

void cdll_insert_beg()
{

node *newnode;
newnode = getnode();
nodectr++;
if(start == NULL)
{

start = newnode;
newnode -> left = start;
newnode -> right = start;

}
else
{

newnode -> left = start -> left;
newnode -> right = start;
start -> left -> right = newnode;
start -> left = newnode;

start = newnode;
}

}

void cdll_insert_end()
{

node *newnode,*temp;
newnode = getnode();
nodectr++;
if(start == NULL)
{

start = newnode;
newnode -> left = start;
newnode -> right = start;

}
else
{

newnode -> left = start -> left;
newnode -> right = start;
start -> left -> right = newnode;
start -> left = newnode;

}
printf("\n Node Inserted at End");

}

void cdll_insert_mid()
{

node *newnode, *temp, *prev;
int pos, ctr = 1;
newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);
if(pos - nodectr >= 2)
{

printf("\n Position is out of range..");
return;

}
if(pos > 1 && pos <= nodectr)
{

temp = start;
while(ctr < pos - 1)
{

temp = temp -> right;
ctr++;

}
newnode -> left = temp;
newnode -> right = temp -> right;
temp -> right -> left = newnode;
temp -> right = newnode;
nodectr++;
printf("\n Node Inserted at Middle.. ");

}
else

printf("position %d of list is not a middle position", pos);
}

}

void cdll_delete_beg()
{

node *temp;
if(start == NULL)
{

printf("\n No nodes exist..");

getch();
return ;

}
else
{

nodectr--;
if(nodectr == 0)
{

free(start);
start = NULL;

}
else
{

temp = start;
start = start -> right;
temp -> left -> right = start;
start -> left = temp -> left;
free(temp);

}
printf("\n Node deleted at Beginning..");

}
}

void cdll_delete_last()
{

node *temp;
if(start == NULL)
{

printf("\n No nodes exist..");
getch();
return;

}
else
{

nodectr--;
if(nodectr == 0)
{

free(start);
start = NULL;

}
else
{

temp = start;
while(temp -> right != start)

temp = temp -> right;
temp -> left -> right = temp -> right;
temp -> right -> left = temp -> left;
free(temp);

}
printf("\n Node deleted from end ");

}
}

void cdll_delete_mid()
{

int ctr = 1, pos;
node *temp;
if(start == NULL)
{

printf("\n No nodes exist..");
getch();
return;

}

else
{

printf("\n Which node to delete: ");
scanf("%d", &pos);
if(pos > nodectr)
{

printf("\nThis node does not exist");
getch();
return;

}
if(pos > 1 && pos < nodectr)
{

temp = start;
while(ctr < pos)
{

temp = temp -> right ;
ctr++;

}
temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(temp);
printf("\n node deleted..");
nodectr--;

}
else
{

printf("\n It is not a middle position..");
getch();

}
}

}

void main(void)
{

int ch,n;
clrscr();
while(1)
{

ch = menu();
switch(ch)
{

case 1 :
printf("\n Enter Number of nodes to create: ");
scanf("%d", &n);
cdll_createlist(n);
printf("\n List created..");
break;

case 2 :
cdll_insert_beg();
break;

case 3 :
cdll_insert_end();
break;

case 4 :
cdll_insert_mid();
break;

case 5 :
cdll_delete_beg();
break;

case 6 :
cdll_delete_last();
break;

case 7 :
cdll_delete_mid();
break;

case 8 :
cdll_display_left_right();
break;

case 9 :
cdll_display_right_left();
break;

case 10:
exit(0);

}
getch();

}
}

3.9. Comparison of Linked List Variations:

The major disadvantage of doubly linked lists (over singly linked lists) is that they
require more space (every node has two pointer fields instead of one). Also, the code
to manipulate doubly linked lists needs to maintain the prev fields as well as the next
fields; the more fields that have to be maintained, the more chance there is for errors.

The major advantage of doubly linked lists is that they make some operations (like the
removal of a given node, or a right-to-left traversal of the list) more efficient.

The major advantage of circular lists (over non-circular lists) is that they eliminate
some extra-case code for some operations (like deleting last node). Also, some
applications lead naturally to circular list representations. For example, a computer
network might best be modeled using a circular list.

Exercise

1.

linked list into two lists in the following way. Let the list be L = (l0, l1 n).

The resultant lists would be R1 = (l0, l2, l4 2 = (l1, l3, l5

2.

3. linked list

4. Suppose that an ordered list L = (l0, l1 n) is represented by a single linked

list. It is required to append the list L = (ln, l0, l1 n) after another ordered
list M represented by a single linked list.

5. Implement the following function as a new function for the linked list
toolkit.

Precondition: head_ptr points to the start of a linked list. The list might
be empty or it might be non-empty.

Postcondition: The return value is the number of occurrences of 42 in
the data field of a node on the linked list. The list itself is unchanged.

6. Implement the following function as a new function for the linked list

toolkit.

Precondition: head_ptr points to the start of a linked list. The list might
be empty or it might be non-empty.

Postcondition: The return value is true if the list has at least one
occurrence of the number 42 in the data part of a node.

7. Implement the following function as a new function for the linked list

toolkit.

Precondition: head_ptr points to the start of a linked list. The list might
be empty or it might be non-empty.

Postcondition: The return value is the sum of all the data components of
all the nodes. NOTE: If the list is empty, the function returns 0.

8.

another circular linked list.

9.
columns using linked list.

10.

properly formatted, with zero being printed in place of zero elements.

11.

1. Add two m X n sparse matrices and
2. Multiply two m X n sparse matrices.

Where all sparse matrices are to be represented by linked lists.

13.

to delete the ith node from the list.

 Multiple Choice Questions

 Which among the following is a linear data structure: []
 A. Queue C. Linked List
 B. Stack D. all the above

 Which among the following is a dynamic data structure: []
 A. Double Linked List C. Stack
 B. Queue D. all the above

 The link field in a node contains: []
 A. address of the next node C. data of next node
 B. data of previous node D. data of current node

 Memory is allocated dynamically to a data structure during execution []
 by ------- function.
 A. malloc() C. realloc()
 B. Calloc() D. all the above

 How many null pointer/s exist in a circular double linked list? []
 A. 1 C. 3
 B. 2 D. 0
 []
6. Suppose that p is a pointer variable that contains the NULL pointer.

What happens if your program tries to read or write *p?
A. A syntax error always occurs at compilation time.
B. A run-time error always occurs when *p is evaluated.
C. A run-time error always occurs when the program finishes.
D. The results are unpredictable.

[]
7. What kind of list is best to answer questions such as: "What is the

item at position n?"
A. Lists implemented with an array.
B. Doubly-linked lists.
C. Singly-linked lists.
D. Doubly-linked or singly-linked lists are equally best.

8. In a single linked list which operation depends on the length of the list. []

A. Delete the last element of the list
B. Add an element before the first element of the list
C. Delete the first element of the list
D. Interchange the first two elements of the list

9. A double linked list is declared as follows: []

struct dllist
{

struct dllist *fwd, *bwd;
int data;

}
Where fwd and bwd represents forward and backward links to adjacent
elements of the list. Which among the following segments of code
deletes the element pointed to by X from the double linked list, if it is
assumed that X points to neither the first nor last element of the list?

A. X -> bwd -> fwd = X -> fwd;
X -> fwd -> bwd = X -> bwd

B. X -> bwd -> fwd = X -> bwd;
X -> fwd -> bwd = X -> fwd

C. X -> bwd -> bwd = X -> fwd;
X -> fwd -> fwd = X -> bwd

D. X -> bwd -> bwd = X -> bwd;
X -> fwd -> fwd = X -> fwd

10. Which among the following segment of code deletes the element []

pointed to by X from the double linked list, if it is assumed that X
points to the first element of the list and start pointer points to
beginning of the list?
A. X -> bwd = X -> fwd;

X -> fwd = X -> bwd
B. start = X -> fwd;

start -> bwd = NULL;
C. start = X -> fwd;

X -> fwd = NULL
D. X -> bwd -> bwd = X -> bwd;

X -> fwd -> fwd = X -> fwd

11. Which among the following segment of code deletes the element []

pointed to by X from the double linked list, if it is assumed that X
points to the last element of the list?
A. X -> fwd -> bwd = NULL;
B. X -> bwd -> fwd = X -> bwd;
C. X -> bwd -> fwd = NULL;
D. X -> fwd -> bwd = X -> bwd;

12. Which among the following segment of code counts the number of []
elements in the double linked list, if it is assumed that X points to the
first element of the list and ctr is the variable which counts the number
of elements in the list?
A. for (ctr=1; X != NULL; ctr++)

X = X -> fwd;
B. for (ctr=1; X != NULL; ctr++)

X = X -> bwd;
C. for (ctr=1; X -> fwd != NULL; ctr++)

X = X -> fwd;
D. for (ctr=1; X -> bwd != NULL; ctr++)

X = X -> bwd;

13. Which among the following segment of code counts the number of []
elements in the double linked list, if it is assumed that X points to the
last element of the list and ctr is the variable which counts the number
of elements in the list?
A. for (ctr=1; X != NULL; ctr++)

X = X -> fwd;
B. for (ctr=1; X != NULL; ctr++)

X = X -> bwd;
C. for (ctr=1; X -> fwd != NULL; ctr++)

X = X -> fwd;
D. for (ctr=1; X -> bwd != NULL; ctr++)

X = X -> bwd;

14. Which among the following segment of code inserts a new node []
pointed by X to be inserted at the beginning of the double linked list.
The start pointer points to beginning of the list?

A. X -> bwd = X -> fwd;
X -> fwd = X -> bwd;

B. X -> fwd = start;
start -> bwd = X;
start = X;

C. X -> bwd = X -> fwd;
X -> fwd = X -> bwd;
start = X;

D. X -> bwd -> bwd = X -> bwd;
X -> fwd -> fwd = X -> fwd

15. Which among the following segments of inserts a new node pointed by []
X to be inserted at the end of the double linked list. The start and last
pointer points to beginning and end of the list respectively?

A. X -> bwd = X -> fwd;

X -> fwd = X -> bwd
B. X -> fwd = start;

start -> bwd = X;
C. last -> fwd = X;

X -> bwd = last;
D. X -> bwd = X -> bwd;

X -> fwd = last;

16. Which among the following segments of inserts a new node pointed by X to be
inserted at any position (i.e neither first nor last) element of

[]
the double linked list? Assume temp pointer points to the
previous position of new node.

A. X -> bwd -> fwd = X -> fwd;
X -> fwd -> bwd = X -> bwd

B. X -> bwd -> fwd = X -> bwd;
X -> fwd -> bwd = X -> fwd

C. temp -> fwd = X;
temp -> bwd = X -> fwd;
X ->fwd = x
X ->fwd->bwd = temp

D. X -> bwd = temp;
X -> fwd = temp -> fwd;
temp ->fwd = X;
X -> fwd -> bwd = X;

17. A single linked list is declared as follows: []
struct sllist
{

struct sllist *next;
int data;

}
Where next represents links to adjacent elements of the list.

Which among the following segments of code deletes the element
pointed to by X from the single linked list, if it is assumed that X
points to neither the first nor last element of the list? prev pointer
points to previous element.

A. prev -> next = X -> next;

free(X);
B. X -> next = prev-> next;

free(X);
C. prev -> next = X -> next;

free(prev);
D. X -> next = prev -> next;

free(prev);

18. Which among the following segment of code deletes the element []
pointed to by X from the single linked list, if it is assumed that X
points to the first element of the list and start pointer points to
beginning of the list?

A. X = start -> next;

free(X);
B. start = X -> next;

free(X);
C. start = start -> next;

free(start);
D. X = X -> next;

start = X;
free(start);

19. Which among the following segment of code deletes the element []
pointed to by X from the single linked list, if it is assumed that X points
to the last element of the list and prev pointer points to last but one
element?

A. prev -> next = NULL;
free(prev);

B. X -> next = NULL;
free(X);

C. prev -> next = NULL;
free(X);

D X -> next = prev;
free(prev);

20. Which among the following segment of code counts the number of []
elements in the single linked list, if it is assumed that X points to the
first element of the list and ctr is the variable which counts the number
of elements in the list?

A. for (ctr=1; X != NULL; ctr++)

X = X -> next;
B. for (ctr=1; X != NULL; ctr--)

X = X -> next;
C. for (ctr=1; X -> next != NULL; ctr++)

X = X -> next;
D. for (ctr=1; X -> next != NULL; ctr--)

X = X -> next;

21. Which among the following segment of code inserts a new node []
pointed by X to be inserted at the beginning of the single linked list.
The start pointer points to beginning of the list?

A. start -> next = X;

X = start;
B. X -> next = start;

start = X
C. X -> next = start -> next;

start = X
D. X -> next = start;

start = X -> next

22. Which among the following segments of inserts a new node pointed by []

X to be inserted at the end of the single linked list. The start and last
pointer points to beginning and end of the list respectively?

A. last -> next = X;
X -> next = start;

B. X -> next = last;
last ->next = NULL;

C. last -> next = X;
X -> next = NULL;

D. last -> next = X -> next;
X -> next = NULL;

23. Which among the following segments of inserts a new node pointed by []
X to be inserted at any position (i.e neither first nor last) element of
the single linked list? Assume prev pointer points to the previous
position of new node.

A. X -> next = prev -> next;
prev -> next = X -> next;

B. X = prev -> next;
prev -> next = X -> next;

C. X -> next = prev;
prev -> next = X;

D. X -> next = prev -> next;
prev -> next = X;

24. A circular double linked list is declared as follows: []
struct cdllist
{

struct cdllist *fwd, *bwd;
int data;

}
Where fwd and bwd represents forward and backward links to adjacent
elements of the list.

Which among the following segments of code deletes the element
pointed to by X from the circular double linked list, if it is assumed
that X points to neither the first nor last element of the list?

A. X -> bwd -> fwd = X -> fwd;

X -> fwd -> bwd = X -> bwd;
B. X -> bwd -> fwd = X -> bwd;

X -> fwd -> bwd = X -> fwd;
C. X -> bwd -> bwd = X -> fwd;

X -> fwd -> fwd = X -> bwd;
D. X -> bwd -> bwd = X -> bwd;

X -> fwd -> fwd = X -> fwd;

25. Which among the following segment of code deletes the element []
pointed to by X from the circular double linked list, if it is assumed
that X points to the first element of the list and start pointer points to
beginning of the list?

A. start = start -> bwd;

X -> bwd -> bwd = start;
start -> bwd = X -> bwd;

B. start = start -> fwd;
X -> fwd -> fwd = start;
start -> bwd = X -> fwd

C. start = start -> bwd;
X -> bwd -> fwd = X;
start -> bwd = X -> bwd

D. start = start -> fwd;
X -> bwd -> fwd = start;
start -> bwd = X -> bwd;

26. Which among the following segment of code deletes the element []
pointed to by X from the circular double linked list, if it is assumed
that X points to the last element of the list and start pointer points to
beginning of the list?

A. X -> bwd -> fwd = X -> fwd;
X -> fwd -> fwd= X -> bwd;

B. X -> bwd -> fwd = X -> fwd;
X -> fwd -> bwd = X -> bwd;

C. X -> fwd -> fwd = X -> bwd;

X -> fwd -> bwd= X -> fwd;
D. X -> bwd -> bwd = X -> fwd;

X -> bwd -> bwd = X -> bwd;

27. Which among the following segment of code counts the number of []
elements in the circular double linked list, if it is assumed that X and
start points to the first element of the list and ctr is the variable which
counts the number of elements in the list?
A. for (ctr=1; X->fwd != start; ctr++)

X = X -> fwd;
B. for (ctr=1; X != NULL; ctr++)

X = X -> bwd;
C. for (ctr=1; X -> fwd != NULL; ctr++)

X = X -> fwd;
D. for (ctr=1; X -> bwd != NULL; ctr++)

X = X -> bwd;

28. Which among the following segment of code inserts a new node []
pointed by X to be inserted at the beginning of the circular double
linked list. The start pointer points to beginning of the list?

A. X -> bwd = start; C. X -> fwd = start -> bwd;
X -> fwd = start -> fwd; X -> bwd = start;
start -> bwd-> fwd = X; start -> bwd-> fwd = X;
start -> bwd = X; start -> bwd = X;
start = X start = X

B. X -> bwd = start ->

bwd; X -> fwd = start;
start -> bwd-> fwd =
X; start -> bwd = X;
start = X

D. X -> bwd = start ->
bwd; X -> fwd = start;
start -> fwd-> fwd = X;
start -> fwd = X;
X = start;

29. Which among the following segment of code inserts a new node []
pointed by X to be inserted at the end of the circular double linked list.
The start pointer points to beginning of the list?
A. X -> bwd = start; C. X -> bwd= start -> bwd;

X -> fwd = start -> fwd; X-> fwd = start;
start -> bwd -> fwd = X; start -> bwd -> fwd = X;
start -> bwd = X; start -> bwd = X;
start = X

D. X -> bwd = start -> bwd;
B. X -> bwd = start -> bwd; X -> fwd = start;

X -> fwd = start; start -> fwd-> fwd = X;
start -> bwd -> fwd = X; start -> fwd = X;
start -> bwd = X; X = start;
start = X

30. Which among the following segments of inserts a new node pointed by []
X to be inserted at any position (i.e neither first nor last) element of
the circular double linked list? Assume temp pointer points to the
previous position of new node.
A. X -> bwd -> fwd = X -> fwd; C. temp -> fwd = X;

X -> fwd -> bwd = X -> bwd; temp -> bwd = X -> fwd;
X -> fwd = X;

B. X -> bwd -> fwd = X -> bwd; X -> fwd -> bwd = temp;
X -> fwd -> bwd = X -> fwd;

D. X -> bwd = temp;
X -> fwd = temp -> fwd;
temp -> fwd = X;
X -> fwd -> bwd = X;

