
 1- Composite
2- Proxy
3- Fly weight

2/15/2016 Lecture - 6 1

Lecture - 6

Composite Pattern

Definition:

2/15/2016 Lecture - 6 3

“Compose objects into tree structures to represent part-whole hierarchies. The composite

pattern lets clients treat individual objects and compositions of objects uniformly.”

Concept

2/15/2016 Lecture - 6 4

 This pattern can show part-whole hierarchy among objects.

 A client can treat a composite object just like a single object.

Real-Life Examples

2/15/2016 Lecture - 6 5

 We can think of any organization that has many departments, and in turn each

department has many employees to serve.

 Groupings of employees create a department, and those departments ultimately can

be grouped together to build the whole organization.

Where to use

7/8/2019 Lecture - 6 6

 When you want to represent a part-whole relationship in a tree structure.

 When you want clients to be able to ignore the differences between compositions of

objects and individual objects.

Structure

7/8/2019 Lecture - 6 7

Participants

7/8/2019 Lecture - 6 8

 Component

 declares the interface for objects in the composition.

 implements default behavior for the interface common to all.

 Leaf

 represents leaf objects in the composition. A leaf has no children.

 defines behavior for primitive objects in the composition.

Participants

7/8/2019 Lecture - 6 9

 Composite

 defines behavior for components having children.

 stores child components.

 implements child-related operations in the Component interface.

 Client

 manipulates objects in the composition through the Component interface.

Example:

7/8/2019 Lecture - 6 10

 In this example we are showing a college organization. We have a Dean and two

Heads of Departments:

 one for computer science and one for mathematics.

 At present, in the mathematics department, we have two lecturers; in the computer

science department we have three lecturers.

Example:

7/8/2019 Lecture - 6 11

Cont…

7/8/2019 Lecture - 6 12

2/15/2016 Lecture - 6 13

Output:

7/8/2019 Lecture - 6 14

Component

7/8/2019 Lecture - 6 15

Composite or Leaf

7/8/2019 Lecture - 6 16

Participants:

7/8/2019 Lecture - 6 17

Teacher

Teacher

ITeacher

CompositePatternEx

Participants

7/8/2019 Lecture - 6 18

Class 0r Interface Participant

ITeacher interface Component

Teacher class Composite

Teacher class Leaf

CompositePatternEx class Client

Proxy Pattern

Definition:

2/15/2016 Lecture - 6 20

“Provide a surrogate or placeholder for another object to control access to it.”

Concept

2/15/2016 Lecture - 6 21

 We want to use a class which can perform as an interface to something else.

Where to use

7/8/2019 Lecture - 6 22

 When the creation of one object is relatively expensive it can be a good idea to replace

it with a proxy that can make sure that instantiation of the expensive object is kept to

a minimum.

 Proxy pattern implementation allows for login and authority checking before one

reaches the actual object that's requested.

 Can provide a local representation for an object in a remote location.

Structure

7/8/2019 Lecture - 6 23

Participants

7/8/2019 Lecture - 6 24

 Proxy

 maintains a reference that lets the proxy access the real subject

 provides an interface identical to Subject's so that a proxy can by

substituted for the real subject.

 controls access to the real subject and may be responsible for creating

and deleting it.

 other responsibilities depend on the kind of proxy:

 remote proxies are responsible for encoding a request and its

arguments and for sending the encoded request to the real subject in a

different address space.

 protection proxies check that the caller has the access permissions

required to perform a request.

Participants

7/8/2019 Lecture - 6 25

 Subject

 defines the common interface for RealSubject and Proxy so that a Proxy
can be used anywhere a RealSubject is expected.

 RealSubject

 defines the real object that the proxy represents.

Example:

7/8/2019 Lecture - 6 26

 In the following program, we are calling the doSomework() function of the proxy

object, which in turn calls the doSomework() of the concrete object. With the

output, we are getting the result directly through the concrete object.

Example:

7/8/2019 Lecture - 6 27

Output:

7/8/2019 Lecture - 6 28

Subject

7/8/2019 Lecture - 6 29

RealSubject

7/8/2019 Lecture - 6 30

Proxy

7/8/2019 Lecture - 6 31

Participants:

7/8/2019 Lecture - 6 32

Proxy

ConcreteSubject

Subject

ProxyPatternEx

Participants

7/8/2019 Lecture - 6 33

Class 0r Interface Participant

Proxy class Proxy

Subject class Subject

ConcreteSubject class ConcreteSubject

ProxyPatternEx class Client

Flyweight Pattern

Definition:

2/15/2016 Lecture - 6 35

“Use sharing to support large numbers of fine-grained objects efficiently.”

Concept

2/15/2016 Lecture - 6 36

 A flyweight is an object through which we try to minimize memory usage by sharing

data as much as possible.

 Two common terms are used here—intrinsic state and extrinsic state.

 The first category (intrinsic) can be stored in the flyweight and is shareable. The

other one depends on the flyweight’s context and is non-shareable.

 Client objects need to pass the extrinsic state to the flyweight.

Where to use

7/8/2019 Lecture - 6 37

 When there is a very large number of objects that may not fit in memory.

 When most of an objects state can be stored on disk or calculated at runtime.

 When there are groups of objects that share state.

Structure

7/8/2019 Lecture - 6 38

Participants

7/8/2019 Lecture - 6 39

 Flyweight

 declares an interface through which flyweights can receive and act on
extrinsic state.

 ConcreteFlyweight

 implements the Flyweight interface and adds storage for intrinsic state, if
any. A ConcreteFlyweight object must be sharable. Any state it stores must
be intrinsic; that is, it must be independent of the ConcreteFlyweight
object's context.

 UnsharedConcreteFlyweight

 not all Flyweight subclasses need to be shared. The Flyweight interface enables
sharing; it doesn't enforce it. It's common for UnsharedConcreteFlyweight objects
to have ConcreteFlyweight objects as children at some level in the flyweight object
structure.

Participants

7/8/2019 Lecture - 6 40

 FlyweightFactory

 creates and manages flyweight objects.

 ensures that flyweights are shared properly. When a client requests a
flyweight, the FlyweightFactory object supplies an existing instance or
creates one, if none exists.

 Client

 maintains a reference to flyweight(s).

 computes or stores the extrinsic state of flyweight(s). .

Example:

7/8/2019 Lecture - 6 41

 In this example, we are dealing with robots which can be either king type or queen type.

 Each of these types can be either green or red.

 Before making any robot, we’ll consult with our factory. If we already have king or queen types

of robots, we’ll not create them again. We will collect the basic structure from our factory and

after that we’ll color them.

 The color is extrinsic data here, but the category of robot (king or queen) is intrinsic.

Example:

7/8/2019 Lecture - 6 42

Output:

7/8/2019 Lecture - 6 43

IRobot

7/8/2019 Lecture - 6 44

RobotFactory

7/8/2019 Lecture - 6 45

Robot

7/8/2019 Lecture - 6 46

Participants:

7/8/2019 Lecture - 6 47

Robot

IRobot

RobotFactory

FlyweightPatternModifiedEx

Participants

7/8/2019 Lecture - 6 48

Class 0r Interface Participant

Irobot interface Flyweight

Robot class ConcreteFlyweight

RobotFactory class FlyweightFactory

FlyweightPatternModifiedEx class Client

Thanks !

