Lecture - 6

1- Composite
2- Proxy
3- Fly weight

a Lecture - 6
N,

2/15/2016

/

Composite Pattern

e
Definition:

™~

“Compose objects into tree structures to represent part-whole hierarchies. The composite

pattern lets clients treat individual objects and compositions of objects uniformly.”

° Lecture - 6
N

2/15/2016

/

e

Concept

0 This pattern can show part-whole hierarchy among objects.

0 A client can treat a composite object just like a single object.

G Lecture - 6
N,

2/15/2016

/

e

Real-Life Examples

0 We can think of any organization that has many departments, and in turn each

department has many employees to serve.

0 Groupings of employees create a department, and those departments ultimately can

be grouped together to build the whole organization.

@ Lecture - 6 2/15/2016

/

a I
Where to use

1 When you want to represent a part-whole relationship in a tree structure.

2 When you want clients to be able to ignore the differences between compositions of

objects and individual objects.

e Lecture - 6 7/8/2019
. /

e
Structure

Client |— g« Component

Operation()

a Lecture - 6
N

children
Leaf Composite
n chi =t

Operation() Operation() G-=---=--f-==-=-=--- 'Drgfgpg ;E'}ﬁ{ﬁ"

Add{Component)

Remove(Componant)

GatChild(int)

7/8/2019

/

4 ™
Participants

e Component
e declares the interface for objects in the composition.
e implements default behavior for the interface common to all.
* Leaf
* represents leaf objects in the composition. A leaf has no children.
e defines behavior for primitive objects in the composition.

° Lecture - 6 7/8/2019
. /

4 ™
Participants

e Composite
e defines behavior for components having children.
e stores child components.
e implements child-related operations in the Component interface.

e (Client

e manipulates objects in the composition through the Component interface.

° Lecture - 6 7/8/2019
. /

e

Example:

 In this example we are showing a college organization. We have a Dean and two

Heads of Departments:

O one for computer science and one for mathematics.

O At present, in the mathematics department, we have two lecturers; in the computer

science department we have three lecturers.

@ Lecture - 6 7/8/2019

/

e
Example:

Lecture - 6

8

class CompositePatternEx {

public static void main(Stringl[] args) {

Teacher Dean = new Teacher("Dr.S5.S5om", "Dean");

Teacher hodMaths = new Teacher ("Mrs.sS.Dzs", "Hod-Math"});

Teacher hodCompSc = new Teacher("Mr. V.Szrcar", "Hod-Computersc.™);

Teacher mathTeacherl = new Teacher ("Math Tezcher-1", "MzthsTeacher");

Teacher mathTeacher?z new Teacher ("Math Teacher-2", "MathsTeacher");

Teacher cseTeacherl

new Teacher ("CSE Teacher-1", "CSETeacher");

Teacher cseTeacher?2 new Teacher ("CSE Teacher-2", "CSETeacher");

Teacher cseTeacher3

new Teacher ("CSE Teacher—-3", "CSETeacher");

//Dean is on top of college

/*HOD —-Maths and Comp. Sc. directly reports to him*/
Dean.Add (hodMaths) ;

Dean.Add (hodCompSc) ;

wm

/*Teachers of Mathematics directly reports to HOD-Maths*/
hodMaths.Add (mathTeacherl) ;

hodMaths.Add (mathTeacher?2) ;

/*Teachers of Computer Sc. dir
hodCompSc.Add (cseTeacherl) ;
hodCompSc.Add (cseTeacher?) ;
hodCompSc.Add (cseTeacher3) ;

m

ctly reports to HOD-Comp.Sc.*/

7/8/2019

/

//’
Cont...

System. out.println("***COMPOSITE PATTERN DEMO ***");

System. out.println ("\nThe college has following structure\n");
System. out.println(Dean.getDetails());

List<ITeacher> hods = Dean.getControllingDepts();

for (int 1 = 0; i < hods.size(); i++) {

System.out.println("\t" + hods.get(1i).getDetails());

List<ITeacher> mathTeachers = hodMaths.getControllingDepts();
for (int i = 0; i < mathTeachers.size(); i++) {

System.out.println("\t\t" + mathTeachers.get(i).getDetails());

List<ITeacher> cseTeachers = hodCompSc.getControllingDepts();
for (int 1 = 0; 1 € cseTeachers.size(); 1++) {

System.out.println("\t\t" + cseTeachers.get(1i).getDetails());

@ Lecture - 6
N,

7/8/2019

/

//One computer teacher is leaving
hodCompSc.Remove (cseTeacher?);
System.out.println(
"\n After CSE Teacher-2 leaving the organization- CSE department "
+ "has following employees:");
cseTeachers = hodCompSc.getControllingDepts();
for (int 1 = 0; 1 < cseTeachers.size(); 1++) {
System.out.println("\t\t" + cseTeachers.get(i).getDetails());

@ Lecture - 6 2/15/2016
8 /

/Output:

[

= did .

#*#*COMPOSITE PATTERN DEMO %«

Dr.5.5om is the Dean

Mrs_ 5.Das is the

Mr. V.Sarcar is the
Math Teacher-2
C5E Teacher-1 is
C5E Teacher-Z is

CS5E Teacher-3 is

After CSE Teacher-I leaving the
C5E Teacher-1l is
CEE Teacher-3 is

@ Lecture - 6
N,

Math Teacher-1 is the

The college has following structure

Hod-Math

Hod-ComputerSc.
MathsTeacher
iz the MathsTeacher
the CS5ETeacher
the CS5ETeacher
the C5ETeacher

crganization- CEE department has following employees:
the C5ETeacher
the C5ETeacher

7/8/2019

/

“Component

@ Lecture - 6
S

interface ITeacher |

public String getDetails () ;

7/8/2019

/

“Composite or Leaf

class Teacher implements ITeacher {

private String teacherNams;
private String deptlams;

private List<ITeacher> controls;
Teacher (String teacherName, String deptNames)
this.teacherNamse = teacherName;
this.deptName = deptName;

controls = new ArrayvlList<ITeacher>();

public void Add(Teacher teacher) {

controls.add (teacher) ;

public void Remowe (Teacher teacher)
controls.remove (teacher) ;

public List<ITeacher> getControllingDepts ()

return controls;

BOoverride

public String getDetails () {

Lecture - 6

.

{

return (teacherNams + " 1s the " 4+ deptName) ;

7/8/2019

/

e

Participants:

lr CompositePatternEx

Client

.

L Component

-

Operation()

A

Leaf

Operation()

@ Lecture - 6
N,

-
Teacher

Composite

childran

Operation{) S------
Add{Component)
Remove(Componeant)

GetChild(int)

forall g in children
g.Operation(};

7/8/2019

/

/ . .
Participants

Class Or Interface

Component [Teacher interface
Composite Teacher class

Leaf Teacher class

Client CompositePatternEx class

@ Lecture - 6 7/8/2019

/

Proxy Pattern

e
Definition:

“Provide a surrogate or placeholder for another object to control access to it.”

@ Lecture - 6
N,

2/15/2016

/

e

Concept

0 We want to use a class which can perform as an interface to something else.

@ Lecture - 6 2/15/2016

/

a I
Where to use

0 When the creation of one object is relatively expensive it can be a good idea to replace

it with a proxy that can make sure that instantiation of the expensive object is kept to

a minimum.

0 Proxy pattern implementation allows for login and authority checking before one

reaches the actual object that's requested.

O Can provide a local representation for an object in a remote location.

@ Lecture - 6 7/8/2019
. /

e

Structure

Subject
Request()
A
RealSubject L. reaiSubject Proxy =
Request() Request() O-f==mmm=mmn realSubject->Request();

@ Lecture - 6
N,

7/8/2019

/

e

Participants

Proxy

 maintains a reference that lets the proxy access the real subject

e provides an interface identical to Subject's so that a proxy can by
substituted for the real subject.

e controls access to the real subject and may be responsible for creating
and deleting it.

e other responsibilities depend on the kind of proxy:

remote proxies are responsible for encoding a request and its
arguments and for sending the encoded request to the real subject in a
different address space.

protection proxies check that the caller has the access permissions
required to perform a request.

@ Lecture - 6 7/8/2019
. /

4 N
Participants

* Subject

e defines the common interface for RealSubject and Proxy so that a Proxy
can be used anywhere a RealSubject is expected.

* RealSubject
e defines the real object that the proxy represents.

@ Lecture - 6 7/8/2019
. /

e
Example:

 In the following program, we are calling the doSomework() function of the proxy
object, which in turn calls the doSomework() of the concrete object. With the

output, we are getting the result directly through the concrete object.

@ Lecture - 6 7/8/2019

/

e

Example:

public class ProxyPatternEx {

| public static void main(Stringl[] args) {
System.out.println ("***Proxy Pattern Demo***\n");
Proxy px = new Proxy();

px.doSomeWork () ;

Lecture - 6

7/8/2019

/

/Output:

@ Lecture - 6
N,

ITurn.:

w*k*Proxy Patternm Demo™**

Froxy call happening now

I am from concrete subject

7/8/2019

/

“Subject

@ Lecture - 6
A

public abstract class Subject

public abstract void doSomeWork () ;

7/8/2019

/

"RealSubject A

public class ConcreteSubject =xtends Subject {

@Override
public void doSomeWork () {

System.out.println(” I am from concrete subject™);
}

@ Lecture - 6 7/8/2019
. /

"Proxy h

public class Proxy e=xtends Subject {
ConcreteSubject cs;
@override

| public void doSomeWork () {

System. out.println("Proxy call happening now");

//Lazy initialization
if (cs == null) {
cs = new ConcreteSubject();

}

cs.doSomeWork () ;

@ Lecture - 6 7/8/2019
. /

/

Participants:

ConcreteSubject

ProxyPatternEx

-

Requesl{)

Request()

Subject

Requesty)
A 7
RealSubject L. reaiSubject Proxy /
D=

realSubject->Request(); 1

@ Lecture - 6
N

7/8/2019

/

/ . .
Participants

Class Or Interface

Proxy

Subject
ConcreteSubject
Client

@ Lecture - 6
N

Proxy class
Subject class
ConcreteSubject class

ProxyPatternEx class

7/8/2019

/

Flyweight Pattern

e
Definition:

“Use sharing to support large numbers of fine-grained objects efficiently.”

@ Lecture - 6
N

2/15/2016

/

4 N
Concept

0 A flyweight is an object through which we try to minimize memory usage by sharing

data as much as possible.
O Two common terms are used here—intrinsic state and extrinsic state.

O The first category (intrinsic) can be stored in the flyweight and is shareable. The

other one depends on the flyweight’s context and is non-shareable.

0 Client objects need to pass the extrinsic state to the flyweight.

@ Lecture - 6 2/15/2016
. /

e
Where to use

0 When there is a very large number of objects that may not fit in memory.
0 When most of an objects state can be stored on disk or calculated at runtime.

0 When there are groups of objects that share state.

@ Lecture - 6 7/8/2019

/

e
Structure

FlyweightFactory éywmghis |.J Flyweight
GetFlyweightikey) ¢ Operation{extrinsicState)
i :
|
if (flyweight[key] exists) { ™
refurmn existing flyweight,
j else {
create new flyweight;
add it to pool of flyweights;
retum the new fiyweight;
AN
—p ConcreteFlyweight — s UnsharedConcreteFlyweight
Operation{extrinsicState) Operation(extrinsicState)
intrinsicState allState
Chient
7/8/2019

@ Lecture - 6
N

/

4 N
Participants

* Flyweight
e declares an interface through which flyweights can receive and act on
extrinsic state.

e ConcreteFlyweight

e implements the Flyweight interface and adds storage for intrinsic state, if
any. A ConcreteFlyweight object must be sharable. Any state it stores must
be intrinsic; that is, it must be independent of the ConcreteFlyweight
object's context.,

e UnsharedConcreteFlyweight

e not all Flyweight subclasses need to be shared. The Flyweight interface enables
sharing; it doesn't enforce it. It's common for UnsharedConcreteFlyweight objects
to have ConcreteFlyweight objects as children at some level in the flyweight object
structure.

@ Lecture - 6 7/8/2019
. /

4 N
Participants

* FlyweightFactory
e creates and manages flyweight objects.

e ensures that flyweights are shared properly. When a client requests a
flyweight, the FlyweightFactory object supplies an existing instance or
creates one, if none exists.

e Client
* maintains a reference to flyweight(s).
e computes or stores the extrinsic state of flyweight(s)..

@ Lecture - 6 7/8/2019
. /

4 N
Example:

0 In this example, we are dealing with robots which can be either king type or queen type.
0 Each of these types can be either green or red.

0 Before making any robot, we’ll consult with our factory. If we already have king or queen types
of robots, we'll not create them again. We will collect the basic structure from our factory and

after that we’ll color them.

0 The color is extrinsic data here, but the category of robot (king or queen) is intrinsic.

@ Lecture - 6 7/8/2019
. /

e

Lecture - 6

class FlyweightPatternModifiedEx {

L}
Example. public static void main(Stringl[] args) throws Exception {

RobotFactory myfactory = new RobotFactoryl();
System. out.println("\n***Flyweight Pattern Example Modified*=**\n");
Robot shape;
/*Here we are trying to get 3 king type robots*/
for (int 1 = 0; i < 3; 1i++) {
shape = (Robot) myfactory.GetRobotFromFactory ("Eing"”) ;
shape.setColor (getRandomlolor()) ;
shape.Print();
}

/*Here we are trying to get 3 queen

fie]
(]
{1
t

for (int 1 = 0; i < 3; i++) {
shape = (Robot) myfactory.GetRobotFromFactory ("Quesen") ;

shape.setColor (getRandomZolor()) ;
shape.Print () ;

}
int NumOfDistinctRobots = myfactory.TotalObjectsCreated();

System.out.println("\n Finally no of Distinct Robot cbjects created:

+ NumOofDistinctRobots) ;

static String getRandemColor() |

Eandom r = new Random();

int random = r.nextInt (20);

if (random % 2 == 0) {
return "red";
} else {

return "gresn";

7/8/2019

/

/Output:

#%%]l yweight Pattern Example Modified***

We do not hawve Eing Bobot. So we are creating a Eing Bobot now.
This i3 a Fing type robot withgreencolor

This i3 a Fing type robot withgreencolor

This i3 a Fing type robot withredcolor
We do not hawve Queen Bobot. So we are creating = Queen Bobot now.
This i3 a Queen type robot withredcocolor

This i3 a Queen type robot withgreencolor

This i3 a Queen type robot withgreencolor

Finally no of Distinct Bobkot ockjects created::Z

@ Lecture - 6 7/8/2019

/

"TRobot

public interface IRobot |

@ Lecture - 6
S

vold Print () ;

7/8/2019

/

"RobotFactory A

class RobotFactory {

Map<String, IRcbot> shapss = new HashMap<String, IRokot>();
public int TotalObjectsCreated() {
return shapes.size();

public IRcbot GetRobotFromFactory (String robotType) throws Exception {
IRobot robotCategory = null;
if (shapes.containsKey (robotType)) {
robotCategory = shapes.get (robotType) ;
} else {
switch (robotType) {
case "Hing':
System. out.println("We do not have EKing Rokot. ™
+ "So we are creating a Eing Robot now.™);
robotCategory = new Robot ("Eing™);
shapes.put ("Eing"”, robotCategory);
break;
case "Queen":
System. out.println("We do not have Queen Robot. "
+ "So we are creating a Queen Robot now.™);
robotCategory = new Robot ("Queen™);
shapes.put ("Queen", robotCategory):;
break;
default:
throw new Exception(" Robot Factory can create only king'
+ " and queen type robots");

¥

return rcobotCategory;

Lecture - 6 7/8/2019

/

"Robot A

class Robot implements IRobot {

String robotType;
public String colorOfRobot;

public Robot (String robotType) {
this.robotType = robotType;

public void setColor (String colorOfRobot) {
this.color0fRobot = colorOfRobot;

@override
public wvoid Print() {
System.cout.println(™ This is a " + rcbhotType + " type rokbot with"
+ colorOfRobot + "color");

@ Lecture - 6 7/8/2019
. /

/
Participants:

RobotFactory

.

add

create new flyweight;
retum the new fiyweight;

FlyweightFactory c;‘,l}"““ﬂ‘g'“s ...J Flyweight
GetFlyweight(key) -? Operation{extrinsicState)
2 I

! (pweihter]exiss (™

§else {

it to pool of fiyweights;

Client

FlyweightPatternModifiedEx
@ Lecture - 6

—p ConcreteFlyweight UnsharedConcreteFlyweight
Operation{extrinsicState) Operation(extrinsicState)
intrinsicState allState

BT
7/8/2019

/

/ . .
Participants

Flyweight
ConcreteFlyweight
FlyweightFactory
Client

@ Lecture - 6
N,

Irobot interface
Robot class

RobotFactory class

Class Or Interface

FlyweightPatternModifiedEx class

7/8/2019

/

