
 1- Structural Design Patterns
2- Adapter

2/15/2016 Lecture - 5 1

Lecture - 5

Structural Design Patterns

What is a Structural Pattern?

7/8/2019 Lecture - 5 3

 Structural patterns describe how classes and objects can be combined to
form larger structures.

 The Structural patterns are:

 The Adapter pattern can be used to make one class interface match
another to make programming easier.

 The Composite pattern is a composition of objects, each of which may
be either simple or itself a composite object.

 The Proxy pattern is frequently a simple object that takes the place of a
more complex object that may be invoked later.

Structural Pattern cont…

7/8/2019 Lecture - 5 4

 The Flyweight pattern is a pattern for sharing objects, where each
instance does not contain its own state, but stores it externally. This
allows efficient sharing of objects to save space, when there are many
instances, but only a few different types.

 The Façade pattern is used to make a single class represent an entire
subsystem.

 The Bridge pattern separates an object’s interface from its
implementation, so you can vary them separately.

 The Decorator pattern, which can be used to add responsibilities to
objects dynamically.

Adapter Pattern

Definition:

2/15/2016 Lecture - 5 6

“Convert the interface of a class into another interface that clients expect. The adapter

pattern lets classes work together that couldn’t otherwise because of incompatible

interfaces.”

Concept

2/15/2016 Lecture - 5 7

 The core concept is best described by the examples given below.

Real-Life Examples

2/15/2016 Lecture - 5 8

 The most common example of this type can be found with mobile charging devices. If

our charger is not supported by a particular kind of switchboard, we need to use an

adapter.

 Even the translator who is translating language for one person is following this

pattern in real life.

Where to use

7/8/2019 Lecture - 5 9

 When you want to use an existing class, and its interface does not match the one you

need.

 When you want to create a reusable class that cooperates with unrelated or

unforeseen classes, that is, classes that don't necessarily have compatible interfaces.

 When you want to increase transparency of classes.

Structure

7/8/2019 Lecture - 5 10

Participants

7/8/2019 Lecture - 5 11

 Target

 defines the domain-specific interface that Client uses.

 Client

 collaborates with objects conforming to the Target interface.

 Adaptee

 defines an existing interface that needs adapting.

 Adapter

 adapts the interface of Adaptee to the Target interface.

Example:

7/8/2019 Lecture - 5 12

 In this example, we can calculate the area of a rectangle easily using the Calculator class and its

getArea() method that uses a rectangle as an input .

 Now suppose we want to calculate the area of a triangle, but we need to get the area of the triangle

through the getArea() method of Calculator. How can we do that?

 To do that we have made a CalculatorAdapter for the triangle and passed a triangle in its getArea()

method.

 The method will translate the triangle input to rectangle input and in turn, it will call the getArea() of

Calculator to get the area of it.

 From the user’s point of view, it seems to the user that he is passing a triangle to get the area of that

triangle.

Example:

7/8/2019 Lecture - 5 13

Output:

7/8/2019 Lecture - 5 14

Adaptee

7/8/2019 Lecture - 5 15

Adapter

7/8/2019 Lecture - 5 16

Target

7/8/2019 Lecture - 5 17

Client

7/8/2019 Lecture - 5 18

Participants:

7/8/2019 Lecture - 5 19

Calculator

CalculatorAdapter

Triangle
AdapterPattern

Participants

7/8/2019 Lecture - 5 20

Class 0r Interface Participant

CalculatorAdapter class Adapter

Calculator class Adaptee

Triangle class Target

AdapterPattern class Client

Thanks !

