
Mobile 3D Graphics

OpenGL ES
Apply projection and camera

views

Apply projection and camera
views

 projection and camera views allow you to

display drawn objects in a way that more closely

resembles how you see physical objects with your

eyes.

 This simulation of physical viewing is done with

mathematical transformations of drawn object

coordinates

projection
 This transformation adjusts the coordinates of drawn

objects based on the width and height of the

GLSurfaceView where they are displayed.

 Without this calculation, objects drawn by OpenGL ES are

skewed by the unequal proportions of the view window.

 A projection transformation typically only has to be

calculated when the proportions of the OpenGL view are

established or changed in the onSurfaceChanged()

method of your renderer.

Camera View

 This transformation adjusts the coordinates of

drawn objects based on a virtual camera position.

 A camera view transformation might be

calculated only once when you establish your

GLSurfaceView, or might change dynamically

based on user actions or your application’s

function.

Define a projection
 The data for a projection transformation is calculated in the

onSurfaceChanged() method of your GLSurfaceView.Renderer class.

// mMVPMatrix is an abbreviation for "Model View Projection Matrix"
private final float[] mMVPMatrix = new float[16];
private final float[] mProjectionMatrix = new float[16];
private final float[] mViewMatrix = new float[16];

@Override
public void onSurfaceChanged(GL10 unused, int width, int height) {

GLES20.glViewport(0, 0, width, height);

float ratio = (float) width / height;

// this projection matrix is applied to object coordinates
// in the onDrawFrame() method
Matrix.frustumM(mProjectionMatrix, 0, -ratio, ratio, -1, 1, 3, 7);

}

Define a camera view
 Complete the process of transforming your drawn objects by adding a

camera view transformation as part of the drawing process in your
renderer

@Override
public void onDrawFrame(GL10 unused) {

...
// Set the camera position (View matrix)
Matrix.setLookAtM(mViewMatrix, 0, 0, 0, -3, 0f, 0f, 0f, 0f, 1.0f, 0.0f);

// Calculate the projection and view transformation
Matrix.multiplyMM(mMVPMatrix, 0, mProjectionMatrix, 0, mViewMatrix, 0);

// Draw shape
mTriangle.draw(mMVPMatrix);

}

Apply projection and camera
transformations
 add a matrix variable to the vertex shader previously defined in the

Triangle class:

public class Triangle {

private final String vertexShaderCode =
// This matrix member variable provides a hook to manipulate
// the coordinates of the objects that use this vertex shader
"uniform mat4 uMVPMatrix;" +
"attribute vec4 vPosition;" +
"void main() {" +
// the matrix must be included as a modifier of gl_Position
// Note that the uMVPMatrix factor *must be first* in order
// for the matrix multiplication product to be correct.
" gl_Position = uMVPMatrix * vPosition;" +
"}";

// Use to access and set the view transformation
private int mMVPMatrixHandle;

...
}

Apply projection and camera
transformations
 modify the draw() method of your graphic objects to accept the

combined transformation matrix and apply it to the shape:

public void draw(float[] mvpMatrix) { // pass in the calculated transformation matrix
...

// get handle to shape's transformation matrix
mMVPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVPMatrix");

// Pass the projection and view transformation to the shader
GLES20.glUniformMatrix4fv(mMVPMatrixHandle, 1, false, mvpMatrix, 0);

// Draw the triangle
GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, vertexCount);

// Disable vertex array
GLES20.glDisableVertexAttribArray(mPositionHandle);

}

projection and camera
transformations

projection and camera
transformations

References
 Build an OpenGL ES environment

https://developer.android.com/training/graphics/opengl/environment

 Define shapes
https://developer.android.com/training/graphics/opengl/shapes

 Draw shapes
https://developer.android.com/training/graphics/opengl/draw#top_of_page

 Apply projection and camera views
https://developer.android.com/training/graphics/opengl/projection#top_of_p
age

https://developer.android.com/training/graphics/opengl/environment
https://developer.android.com/training/graphics/opengl/shapes
https://developer.android.com/training/graphics/opengl/draw#top_of_page
https://developer.android.com/training/graphics/opengl/projection#top_of_page

	Mobile 3D Graphics
	Apply projection and camera views
	projection
	Camera View
	Define a projection
	Define a camera view
	Apply projection and camera transformations
	Apply projection and camera transformations
	projection and camera transformations
	projection and camera transformations
	References

