
Mobile 3D Graphics

OpenGL ES
Apply projection and camera 

views



Apply projection and camera 
views

 projection and camera views allow you to 

display drawn objects in a way that more closely 

resembles how you see physical objects with your 

eyes. 

 This simulation of physical viewing is done with 

mathematical transformations of drawn object 

coordinates



projection
 This transformation adjusts the coordinates of drawn 

objects based on the width and height of the 

GLSurfaceView where they are displayed. 

 Without this calculation, objects drawn by OpenGL ES are 

skewed by the unequal proportions of the view window. 

 A projection transformation typically only has to be 

calculated when the proportions of the OpenGL view are 

established or changed in the onSurfaceChanged() 

method of your renderer. 



Camera View

 This transformation adjusts the coordinates of 

drawn objects based on a virtual camera position.  

 A camera view transformation might be 

calculated only once when you establish your 

GLSurfaceView, or might change dynamically 

based on user actions or your application’s 

function.



Define a projection
 The data for a projection transformation is calculated in the 

onSurfaceChanged() method of your GLSurfaceView.Renderer class.

// mMVPMatrix is an abbreviation for "Model View Projection Matrix"
private final float[] mMVPMatrix = new float[16];
private final float[] mProjectionMatrix = new float[16];
private final float[] mViewMatrix = new float[16];

@Override
public void onSurfaceChanged(GL10 unused, int width, int height) {

GLES20.glViewport(0, 0, width, height);

float ratio = (float) width / height;

// this projection matrix is applied to object coordinates
// in the onDrawFrame() method
Matrix.frustumM(mProjectionMatrix, 0, -ratio, ratio, -1, 1, 3, 7);

}



Define a camera view
 Complete the process of transforming your drawn objects by adding a 

camera view transformation as part of the drawing process in your 
renderer

@Override
public void onDrawFrame(GL10 unused) {

...
// Set the camera position (View matrix)
Matrix.setLookAtM(mViewMatrix, 0, 0, 0, -3, 0f, 0f, 0f, 0f, 1.0f, 0.0f);

// Calculate the projection and view transformation
Matrix.multiplyMM(mMVPMatrix, 0, mProjectionMatrix, 0, mViewMatrix, 0);

// Draw shape
mTriangle.draw(mMVPMatrix);

}



Apply projection and camera 
transformations
 add a matrix variable to the vertex shader previously defined in the 

Triangle class:

public class Triangle {

private final String vertexShaderCode =
// This matrix member variable provides a hook to manipulate
// the coordinates of the objects that use this vertex shader
"uniform mat4 uMVPMatrix;" +
"attribute vec4 vPosition;" +
"void main() {" +
// the matrix must be included as a modifier of gl_Position
// Note that the uMVPMatrix factor *must be first* in order
// for the matrix multiplication product to be correct.
" gl_Position = uMVPMatrix * vPosition;" +
"}";

// Use to access and set the view transformation
private int mMVPMatrixHandle;

...
}



Apply projection and camera 
transformations
 modify the draw() method of your graphic objects to accept the 

combined transformation matrix and apply it to the shape:

public void draw(float[] mvpMatrix) { // pass in the calculated transformation matrix
...

// get handle to shape's transformation matrix
mMVPMatrixHandle = GLES20.glGetUniformLocation(mProgram, "uMVPMatrix");

// Pass the projection and view transformation to the shader
GLES20.glUniformMatrix4fv(mMVPMatrixHandle, 1, false, mvpMatrix, 0);

// Draw the triangle
GLES20.glDrawArrays(GLES20.GL_TRIANGLES, 0, vertexCount);

// Disable vertex array
GLES20.glDisableVertexAttribArray(mPositionHandle);

}



projection and camera 
transformations



projection and camera 
transformations



References
 Build an OpenGL ES environment

https://developer.android.com/training/graphics/opengl/environment

 Define shapes
https://developer.android.com/training/graphics/opengl/shapes

 Draw shapes
https://developer.android.com/training/graphics/opengl/draw#top_of_page

 Apply projection and camera views
https://developer.android.com/training/graphics/opengl/projection#top_of_p
age

https://developer.android.com/training/graphics/opengl/environment
https://developer.android.com/training/graphics/opengl/shapes
https://developer.android.com/training/graphics/opengl/draw#top_of_page
https://developer.android.com/training/graphics/opengl/projection#top_of_page

	Mobile 3D Graphics
	Apply projection and camera views
	projection
	Camera View
	Define a projection
	Define a camera view
	Apply projection and camera transformations
	Apply projection and camera transformations
	projection and camera transformations
	projection and camera transformations
	References

