
Mobile 3D Graphics

Introduction to Android 
OpenGL ES

Build an OpenGL ES environment



OpenGL ES
 Open Graphics Library OpenGL : is a cross-platform graphics API that 

specifies a standard software interface for 3D graphics processing 
hardware. 

 OpenGL ES is a flavor of the OpenGL specification intended for 
embedded devices. 

 Android supports several versions of the OpenGL ES API:

 OpenGL ES 1.0 and 1.1 - supported by Android 1.0 and higher.

 OpenGL ES 2.0 - supported by Android 2.2 (API level 8) and higher.

 OpenGL ES 3.0 - supported by Android 4.3 (API level 18) and higher.

 OpenGL ES 3.1 - supported by Android 5.0 (API level 21) and higher



OpenGL ES

There are TWO foundational classes in the Android framework that let 

you create and manipulate graphics with the OpenGL ES API: 

 GLSurfaceView : use this class by creating an instance of 

GLSurfaceView and adding your Renderer to it.

 GLSurfaceView.Renderer: This interface defines the methods 

required for drawing graphics in a GLSurfaceView. You must provide 

an implementation of this interface as a separate class and attach it to 

your GLSurfaceView instance using GLSurfaceView.setRenderer().



Create an activity for OpenGL ES 
graphics

public class OpenGLES20Activity extends Activity {

private GLSurfaceView mGLView;

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

// Create a GLSurfaceView instance and set it
// as the ContentView for this Activity.
mGLView = new MyGLSurfaceView(this);
setContentView(mGLView);

}
}



Declaring OpenGL requirements

 OpenGL ES version requirements - If your application requires a 

specific version of OpenGL ES, you must declare that requirement by 

adding the following settings to your manifest as shown below.

 For OpenGL ES 2.0:

 For OpenGL ES 3.0:

 For OpenGL ES 3.1:

<uses-feature android:glEsVersion="0x00020000" android:required="true" />

<uses-feature android:glEsVersion="0x00030000" android:required="true" />

<uses-feature android:glEsVersion="0x00030001" android:required="true" /



Declaring OpenGL requirements

 If your application uses texture compression, you must also 

declare which compression formats your app supports, so 

that it is only installed on compatible devices.

<supports-gl-texture

android:name="GL_OES_compressed_ETC1_RGB8_texture" />

<supports-gl-texture

android:name="GL_OES_compressed_paletted_texture" />



Build a GLSurfaceView object
 A GLSurfaceView is a specialized view where you can draw OpenGL 

ES graphics. 
 It does not do much by itself. The actual drawing of objects is 

controlled in the GLSurfaceView.Renderer that you set on this view.

class MyGLSurfaceView extends GLSurfaceView {

private final MyGLRenderer mRenderer;

public MyGLSurfaceView(Context context){
super(context);

// Create an OpenGL ES 2.0 context
setEGLContextClientVersion(2);

mRenderer = new MyGLRenderer();

// Set the Renderer for drawing on the GLSurfaceView
setRenderer(mRenderer);

}
}

inner class in the 
activity that uses 
it



Build a renderer class
 There are three methods in a renderer that are called by 

the Android system in order to figure out what and how to 

draw on a GLSurfaceView:

1. onSurfaceCreated() - Called once to set up the view's 

OpenGL ES environment.

2. onDrawFrame() - Called for each redraw of the view.

3. onSurfaceChanged() - Called if the geometry of the 

view changes, for example when the device's screen 

orientation changes.



Build a renderer class
public class MyGLRenderer implements GLSurfaceView.Renderer {

public void onSurfaceCreated(GL10 unused, EGLConfig config) {
// Set the background frame color
GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

}

public void onDrawFrame(GL10 unused) {
// Redraw background color
GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT);

}

public void onSurfaceChanged(GL10 unused, int width, int height) {
GLES20.glViewport(0, 0, width, height);

}
}

separate 
class



Build an OpenGL ES environment

 That’s all there is to it! 

 The code examples create a simple Android 

application that displays a black screen using 

OpenGL. While this code does not do anything 

very interesting, by creating these classes, you 

have laid the foundation you need to start 

drawing graphic elements with OpenGL.



References
 Build an OpenGL ES environment
https://developer.android.com/training/graphics/opengl/environment

https://developer.android.com/training/graphics/opengl/environment

	Mobile 3D Graphics
	OpenGL ES
	OpenGL ES
	�Create an activity for OpenGL ES graphics
	Declaring OpenGL requirements
	Declaring OpenGL requirements
	Build a GLSurfaceView object
	Build a renderer class
	Build a renderer class
	Build an OpenGL ES environment
	References

