
Mobile 3D Graphics

Introduction to Android
Views

Custom Views
 The Android framework provides several default

views.
 The base class a view is the View.
 Views are responsible for measuring, layouting

and drawing themselves and their child elements.
 Views are also responsible for saving their UI

state and handling touch events.
 Developers can also create Custom Views and

use them in their application.

Create Custom Views
It is possible to create Custom Views by:

 Compound views - combining views with a
default wiring.

 Custom views - creating your own views
by extending an existing view, e.g. Button
by extending the View class

Compound Views

 Compound views (also known as Compound

Components) are pre-configured ViewGroups

based on existing views with some predefined

view interaction.

 Compound views also allow you to add

custom API to update and query the state of

the compound view.

Default View Hierarchy Of
Android

How Android draws the view
hierarchy

 Once an activity receives the focus, it must provide the root node of its

layout hierarchy to the Android system. Afterwards the Android system

starts the drawing procedure.

 Drawing begins with the root node of the layout.

Drawing the layout is a two pass process:

 measuring pass - implemented in the `measure(int, int)` method.

Every view stores its measurements.

 layout pass - implemented in the layout(int, int, int, int) method.

During this phase each layout manager is responsible for positioning

all of its children. It uses the sizes computed in the measure pass.

Life cycle of a Android view

Traversal life cycle events

 onMeasure() method determines the size for

the view and its children.

 onLayout() positions the views based on the

result of the onMeasure() method call.

Creating custom views

 By extending the View class or one of its

subclasses you can create your custom view.

 For drawing view use the onDraw() method. In

this method you receive a Canvas object which

allows you to perform drawing operations on it,

e.g. draw lines, circle, text or bitmaps.

Using new views in layout files
 Custom and compound views can be used in layout files.
 For this you need to use the full qualified name in the layout file, e.g.

using the package and class name.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical" >

<de.vogella.android.ownview.MyDrawView
android:id="@+id/myDrawView1"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />

</LinearLayout>

Define additional attributes for
your custom Views

 To define additional attributes create an attrs.xml file in
your res/values folder.

 The following shows an example of attributes defined for a
new view called ColorOptionsView.

<?xml version="1.0" encoding="utf-8"?>

<resources>

<declare-styleable name="ColorOptionsView">

<attr name="titleText" format="string“ localization="suggested" />

<attr name="valueColor" format="color" />

</declare-styleable>

</resources>

Create A Custom View
There are TWO WAYS of making custom views in Android:
1. Extending the View class- Building the view from scratch
2. Extending already existing views (TextViews, LinearLayouts Etc

)

In this Exercise, we will be focusing on the first way of
making custom views.

1. How to make basic shapes using Custom Views
2. How to add custom attributes to your Custom Views
3. How to make shape manipulations using Custom

Views (increase/decrease shape size, change shape color using
functions)

Exercise1:
Make Basic Shapes

1. Create a new Android Studio project and select Empty Activity

template. At this point you should only have one class

named “MainActivity” inside your project.

2. Create a new class, name it “MyCustomView”, and extend in

by View class.

3. At this point, android Studio will prompt you to an error to

create constructor(s) matching super. On clicking the prompt,

you should select all the options for the constructor.

Make Basic Shapes cont

4. create a new function void init(@Nullable AttributeSet set) with blank body and

make all the constructors access this function by calling init(attrs) on all

constructors (except you have to pass null in the first constructor)

5. Override the onDraw(Canvas canvas) in this class. In this function you have to:

 Create a new Paint object and assign a color to it,

 Create a Rect object and assign left, right, top, bottom coordinates to it

 then call canvas.drawRect(your rect object, your paint object).

6. Last step: Add your custom view to the activity_main.xml.

package com.example.dell.g_custom_view;

import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Rect;
import android.os.Build;
import android.support.annotation.Nullable;
import android.support.annotation.RequiresApi;
import android.util.AttributeSet;
import android.view.View;

public class MyCustomView extends View {
public MyCustomView(Context context) {

super(context);
init(null);

}

public MyCustomView(Context context, @Nullable AttributeSet attrs) {
super(context, attrs);
init(attrs);

}

public MyCustomView(Context context, @Nullable AttributeSet attrs, int

defStyleAttr) {

super(context, attrs, defStyleAttr);

init(attrs);

}

@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)

public MyCustomView(Context context, @Nullable AttributeSet attrs, int

defStyleAttr, int defStyleRes) {

super(context, attrs, defStyleAttr, defStyleRes);

init(attrs);

}

private void init(@Nullable AttributeSet set) {

}

@Override

protected void onDraw(Canvas canvas) {

super.onDraw(canvas);

Paint paint = new Paint(Paint.ANTI_ALIAS_FLAG);

paint.setColor(Color.MAGENTA);

Rect rect = new Rect();

rect.left = 0;

rect.right = getWidth();

rect.top = 0;

rect.bottom = getHeight();

canvas.drawRect(rect, paint);

}

}

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:gravity="center"
tools:context="com.example.dell.g_custom_view.MainActivity">

<com.example.dell.g_custom_view.MyCustomView
android:layout_width="300sp"
android:layout_height="300sp" />

</LinearLayout>

Add your custom view
activity_main.xml

Exercise2:
Add Custom Attributes

1. Make mRect and mPaint objects of Rect and Paint class respectively

as global to the class. make their instances in the init() method that was made.

Then replace rect with mRect, and paint with mPaint.The warning should be

removed by following this step.

 public class MyCustomView extends View{

Paint mPaint;

Rect mRect;

int mSquareColor;

Exercise2:
Add Custom Attributes

2. Now, to begin adding custom attributes to your custom views, you have to first add

a new file your “values” directory and name it “attrs.xml”. Inside this xml file, inside

<resources> </resources> tags, add a “declare-styleable” tag with attribute “name” as

MyCustomView (your custom view class name).

<?xml version="1.0" encoding="utf-8"?>
<resources>

<declare-styleable name="MyCustomView">
<attr name="square_color" format="color"/>

</declare-styleable>
</resources>

3. Inside these tags, all your custom attributes will be inserted in the form of key

(“name=”) — value (“format=”) pairs. In our case, we will add a custom attribute

named square_color with format as color.

Add Custom Attributes cont
4. Next, we need to check in our init() method whether the

AttributeSet set being passed as a parameter is null or not. If it is not null, then

we obtain a TypedArray typedArray (say) by

calling obtainStyledAttributes(set, R.styleable.MyCustomView) using

getContext();

5. Next, we declare an int variable mSquareColor and initialise with the values

input through the TypedArray ta, also providing the default color. Also

remember to call ta.recycle() once you are done accessing it.

private void init(AttributeSet set){

mPaint = new Paint(Paint.ANTI_ALIAS_FLAG);

mRect = new Rect();

if(set == null){

return;

}

TypedArray ta = getContext().obtainStyledAttributes(set, R.styleable.MyCustomView);

mSquareColor = ta.getColor(R.styleable.MyCustomView_square_color, Color.GREEN);

mPaint.setColor(mSquareColor);

ta.recycle();

}

Add Custom Attributes cont
6. Now all you need to do is add your custom attribute square_color to

your activity_main.xml , you will see that the custom view color

changes to whatever color you add inside the attribute parameter.

<com.example.dell.g_custom_view2_attributes.MyCustomView

android:layout_width="300sp"

android:layout_height="300sp"

app:square_color="@color/colorPrimary"/>

 More examples on custom attributes are for size of your view,

radius in case of circle, text input, etc.

Exercise:
Create A Compound View

References

	Mobile 3D Graphics
	Custom Views
	Create Custom Views
	Compound Views
	Default View Hierarchy Of Android
	How Android draws the view hierarchy
	Life cycle of a Android view
	Creating custom views
	Using new views in layout files
	Define additional attributes for your custom Views
	�Create A Custom View
	Exercise1: �Make Basic Shapes
	Make Basic Shapes cont
	Slide Number 14
	Slide Number 15
	Slide Number 16
	� Add your custom view � activity_main.xml
	�����Exercise2:�Add Custom Attributes
	Exercise2:�Add Custom Attributes
	Add Custom Attributes cont
	Slide Number 21
	Add Custom Attributes cont
	Exercise: �Create A Compound View
	References

