
Mobile 3D Graphics

Introduction to Android 
graphics



Android graphics

 Android provides a huge set of 2D-drawing APIs

that allow you to create graphics.

 Android framework provides a rich set of powerful 

APIS for applying animation to UI elements and 

graphics as well as drawing custom 2D and 3D

graphics.



Animation systems 

 Three animation systems used in Android 

applications:

1. View Animation 

2. Drawable Animation

3. Property Animation



View Animation

 View Animation is also called as TweenAnimation.

 The android.view.animation provides classes which 

handle view animation.

 This animation can be used to animate the content 

of a view.

 It is limited to simple transformation such as moving, 

re-sizing and rotation, but not its background color.



Drawable Animation

 Drawable animation is implemented using 

the AnimationDrawable class.

 This animation works by displaying a running 

sequence of 'Drawable' resources that is 

images, frame by frame inside a view object.



Property Animation

 Property animation is the preferred method of 

animation in Android.

 Which lets you animate any properties of any 

objects, view or non-view objects.

 The android.animation provides classes which 

handle property animation.



2D Graphics 
Canvas

 Android graphics provides low level graphics 

tools such as canvases, color, filters, points and 

rectangles which handle drawing to the screen 

directly.



Ways to draw 2D graphics
1. Draw your animation into a View object from your layout.

2. Draw your animation directly to a Canvas.

Some of the important methods of Canvas Class are as follows

i) drawText()

ii) drawRoundRect()

iii) drawCircle()

iv) drawRect()

v) drawBitmap()

vi) drawARGB()

 You can use these methods in onDraw() method to create your own 

custom user interface.



3D Graphics 
OpenGL ES

 "OpenGL ES" APIs supported by the Android 

framework. 

 powerful tools for manipulating and displaying 

high-end animated 3D graphics that can be 

benefited from the hardware acceleration of 

graphics processing units (GPUs) provided on 

many Android devices.



Example

 Create a new Java class that should extend 

from View class. 

 Override the onDraw() method. In this method, 

you can use Canvas class to draw the different 

shapes.



MyView.java
 public class MyView extends View

{
public MyView(Context context)
{

super(context);
// TODO Auto-generated constructor stub

}
@Override
protected void onDraw(Canvas canvas)
{

// TODO Auto-generated method stub
super.onDraw(canvas);
int radius;
radius = 50;
Paint paint = newPaint();
paint.setStyle(Paint.Style.FILL);
paint.setColor(Color.parseColor("#CD5C5C"));
canvas.drawCircle(150,200, radius, paint);
canvas.drawRoundRect(newRectF(20,20,100,100), 20, 20, paint);
canvas.rotate(-45);
canvas.drawText(“ITMC401", 40, 180, paint);
canvas.restore();

}
}



MainActivity.java
 Note: You have to pass the object of subclass that extends from View 

class in setContentView() method as given below. In our case the name 
of the subclass is MyView.

 Public class MainActivity extends Activity
{

@Override
protected void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(new MyView(this));

}
@Override
public boolean onCreateOptionsMenu(Menu menu)
{

// Inflate the menu; this adds items to the action bar if it is present.
getMenuInflater().inflate(R.menu.main, menu);
return true;

}
}



References


	Mobile 3D Graphics
	Android graphics
	Animation systems 
	View Animation
	Drawable Animation
	Property Animation
	2D Graphics �Canvas
	Ways to draw 2D graphics
	3D Graphics �OpenGL ES
	Example
	MyView.java
	MainActivity.java
	References

