
05/12/1443

1

جامعة طرابلس
كلية تقنية المعلومات

Advanced Databasesقواعد البياʭت المتقدمة
ITSE312

 عبدالسلام منصور الشريف .د
a.abdoessalam@uot.edu.ly

 اللغة الإجرائية– السابعةالمحاضرة
Procedural Language

Contents
 Programming Database

 Variables
 Data Conversion
 Procedural Language

05/12/1443

2

Procedural Language - Variables

 Variables are declared in the body of a batch or procedure with
the DECLARE statement and are assigned values by using either
a SET or SELECT (Not ANSI) statement.

 After declaration, all variables are initialized as NULL, unless a
value is provided as part of the declaration.

DECLARE @local_variable [AS] data_type [= value]

Procedural Language - Variables

declare @mark as decimal(5,2);
select @mark = 50.53822345;
select 'Your mark is =', @mark;

declare @now as datetime2 = getdate();
print @now;

declare @age as int;
set @age = 45;
select 'Your age is =',@age

declare @hello as nvarchar(200)=N’Hello World'
select 'Your message is =', @hello;

05/12/1443

3

Procedural Language – Conversion

 Data types can be converted in the following scenarios:

 When data from one object is moved to, compared with, or combined
with data from another object, the data may have to be converted from
the data type of one object to the data type of the other.

 When data from a Transact-SQL result column, return code, or output
parameter is moved into a program variable, the data must be converted
from the SQL Server system data type to the data type of the variable.

Implicit vs Explicit Conversion

 Data types can be converted either implicitly or explicitly.

 Implicit conversions are not visible to the user. SQL Server
automatically converts the data from one data type to another.
For example, when a smallint is compared to an int, the
smallint is implicitly converted to int before the comparison
proceeds.

 GETDATE() implicitly converts to date style 0.
SYSDATETIME() implicitly converts to date style 21.

 Explicit conversions use the CAST function.

 The CAST function convert a value (a local variable, a
column, or another expression) from one data type to another.

05/12/1443

4

Implicit Conversion

declare @string VARCHAR(10);
set @string = 1; -- implicitly converted to string
select @string + ' is a string.'

declare @notastring INT;
set @notastring = '1'; -- implicitly converted to int
select @notastring + '1'; -- implicitly converted to int

declare @intstring INT;
set @intstring = '1'; -- implicitly converted to int
select @intstring + ' is not a string.'; -- can’t convert

Procedural Language – Conversion

05/12/1443

5

Procedural Language – Cast

 This function converts an expression of one data type to another.

expression: any valid expression.

data_type: the target data type.

length: an optional integer that specifies the length of the target data
type, for data types that allow a user specified length. The default
value is 30.

CAST (expression AS data_type [(length)])

Procedural Language – Cast

 Explicit conversion, cast will truncate or round numbers according
to the target data type.

SELECT CAST(10.6496 AS INT) as trunc1,
CAST(-10.6496 AS INT) as trunc2,
CAST(10.6496 AS NUMERIC) as round1,
CAST(-10.6496 AS NUMERIC) as round2;

trunc1 trunc2 round1 round2
10 -10 11 -11

05/12/1443

6

Procedural Language – IF…ELSE

 Imposes conditions on the execution of a Transact-SQL
statement. The Transact-SQL statement that follows an IF
keyword and its condition is executed if the condition is satisfied:
the Boolean expression returns TRUE.

 The optional ELSE keyword introduces another Transact-SQL
statement that is executed when the IF condition is not satisfied:
the Boolean expression returns FALSE.

IF Boolean_expression
{ sql_statement | statement_block }

[ELSE
{ sql_statement | statement_block }]

IF DATENAME(weekday, GETDATE()) IN (N'Saturday', N'Sunday')
SELECT 'Weekend';

ELSE
SELECT 'Weekday';

Procedural Language – IF…ELSE

 The condition could be a SQL statement.

IF
(SELECT COUNT(*) FROM [dbo].[Students] WHERE Enrolled = 1) > 5

PRINT 'There are more than 5 Students enrolled.'
ELSE

PRINT 'There are 5 or less students enrolled.' ;

05/12/1443

7

Procedural Language – CASE

 Evaluates a list of conditions and returns one of multiple possible
result expressions.

 The searched CASE expression evaluates a set of Boolean
expressions to determine the result.

 It supports an optional ELSE argument.

 CASE can be used in any statement or clause that allows a valid
expression. For example, you can use CASE in statements such
as SELECT, UPDATE, DELETE and SET, and in clauses such as
select_list, IN, WHERE, ORDER BY, and HAVING.

CASE
WHEN Boolean_expression THEN result_expression
[...n]
[ELSE else_result_expression]

END

Procedural Language – CASE

 List students’ Enrollment status.

SELECT Id,Name,
CASE
WHEN Enrolled = 0 THEN N'Not Enrolled’
WHEN Enrolled = 1 THEN N'Enrolled’
ELSE N'Unknown’

END
FROM [dbo].[Students]

05/12/1443

8

Procedural Language – BEGIN … END

 Encloses a series of Transact-SQL statements so that a group of
Transact-SQL statements can be executed. BEGIN and END are
control-of-flow language keywords.

BEGIN
{ sql_statement | statement_block }

END

IF DATENAME(weekday, GETDATE()) IN (N'Saturday', N'Sunday’)
BEGIN

SELECT 'Weekend’;
END

