
13/11/1445

1

جامعة طرابلس
كلية تقنية المعلومات

Advanced Databasesقواعد البياʭت المتقدمة
IT IS-325

 عبدالسلام منصور الشريف .د
a.abdoessalam@uot.edu.ly

 III استرجاع البياʭت – الخامسةالمحاضرة
III Retrieving Data

Advanced Database Lecture 3

Contents
 Retrieving Data

 SELECT
 SUBQUERIES

Advanced Database Lecture 3

13/11/1445

2

SELECT [ALL / DISTINCT] expr1 [AS col1], expr2 [AS col2] ;

FROM tablename WHERE condition

SELECT FROM WHERE
......

Select Statement - General Structure

Sub-Queries

 A subquery is a query that is nested inside a SELECT, INSERT,
UPDATE, or DELETE statement, or inside another subquery.

 A subquery is also called an inner query or inner select, while the
statement containing a subquery is also called an outer query or
outer select.

 A subquery nested in the outer SELECT statement has the following
components:

 A regular SELECT query including the regular select list components.

 A regular FROM clause including one or more table or view names.

 An optional WHERE clause.

 An optional GROUP BY clause.

 An optional HAVING clause.

13/11/1445

3

Sub-Queries

 A subquery can be used as an expression in the SELECT.

 A subquery can be nested inside the WHERE or HAVING clause of
an outer SELECT, INSERT, UPDATE, or DELETE statement, or
inside another subquery.

 Up to 32 levels of nesting is possible, although the limit varies based
on available memory and the complexity of other expressions in the
query.

 If a table appears only in a subquery and not in the outer query, then
columns from that table cannot be included in the output (the select
list of the outer query).

Sub-Queries

 Statements that include a subquery usually take one of these
formats:

 WHERE expression \[NOT] IN (subquery)

 WHERE expression comparison_operator \[ANY | ALL] (subquery)

 WHERE \[NOT] EXISTS (subquery)

 There are three basic types of subqueries. Those that:

 Operate on lists introduced with IN, or those that a comparison operator
modified by ANY or ALL.

 Are introduced with an unmodified comparison operator and must return a
single value.

 Are existence tests introduced with EXISTS.

13/11/1445

4

Sub-Queries

 A subquery is subject to the following restrictions:

 The select list of a subquery introduced with a comparison operator can
include only one expression or column name (except that EXISTS and IN
operate on SELECT * or a list, respectively).

 If the WHERE clause of an outer query includes a column name, it must be
join-compatible with the column in the subquery select list.

 Because they must return a single value, subqueries introduced by an
unmodified comparison operator (one not followed by the keyword ANY or
ALL) cannot include GROUP BY and HAVING clauses.

 The DISTINCT keyword cannot be used with subqueries that include
`GROUP BY.

Sub-Queries – in SELECT

List the student with their highest marks

SELECT Id,Name,

(SELECT MAX(Mark) FROM dbo.Semesters sem

WHERE stu.id = sem.StudentId

) Maxmark

FROM dbo.Students stu

13/11/1445

5

Sub-Queries – in FROM

 Find The max mark by semester type ordered by maxmark

SELECT SemesterType, Maxmark FROM

(SELECT SemesterType, MAX(Mark) Maxmark

FROM dbo.Semesters GROUP BY SemesterType

) sem

ORDER BY Maxmark DESC

Sub-Queries – in FROM

 The max of average mark

SELECT MAX(Avgmark) Maxavg

FROM (SELECT StudentId, AVG(Mark) Avgmark

 FROM dbo.Semesters GROUP BY StudentId) sem

13/11/1445

6

Sub-Queries – in WHERE

Students who have marks above the average

SELECT DISTINCT StudentId

FROM dbo.Semesters

WHERE Mark >

(SELECT AVG(Mark) FROM dbo.Semesters)

Sub-Queries – in WHERE. Cont.

Find information about student with marks above the average

SELECT stu.Id,stu.Name

FROM dbo.Students stu

WHERE Id in

(SELECT DISTINCT StudentId FROM dbo.Semesters

WHERE Mark > (SELECT AVG(Mark) FROM dbo.Semesters))

13/11/1445

7

Sub-Queries –ANY, SOME

 Compares a scalar value with a single-column set of
values. SOME and ANY are equivalent.

 SOME requires the scalar_expression to compare positively to at least one
value returned by the subquery.

scalar_expression { = | < > | ! = | > | > = | ! > | < | < = | ! < } { SOME | ANY } (subquery)

 SOME or ANY returns TRUE when the comparison specified is TRUE
for any pair (scalar_expression,x) where x is a value in the
single-column set; otherwise, returns FALSE.

 The =ANY operator is equivalent to IN.

 The <>ANY operator, not equivalent to NOT IN:
 <>ANY means not = a, or not = b, or not = c

 NOT IN means not = a, and not = b, and not = c

 <>ALL means the same as NOT IN

Sub-Queries – ANY, SOME

 List courses whose marks are greater than or equal to the
maximum mark of any classfication

SELECT DISTINCT CourseId FROM [dbo].[Semesters] sem

WHERE sem.Mark >= ANY (

SELECT MAX(sem.Mark) FROM [dbo].[Semesters] sem

INNER JOIN [dbo].[Courses] cou

ON sem.CourseId = cou.Id

GROUP BY cou.Classification)

13/11/1445

8

Sub-Queries –ALL

Compares a scalar value with all column set of values.

scalar_expression { = | < > | ! = | > | > = | ! > | < | < = | ! < } ALL (subquery)

ALL requires the scalar_expression to compare positively to all
of the values returned by the subquery.

Sub-Queries – EXISTS

 When a subquery is introduced with the keyword EXISTS, the
subquery functions as an existence test.

 The WHERE clause of the outer query tests whether the rows that
are returned by the subquery exist.

 The subquery does not actually produce any data; it returns a value
of TRUE or FALSE.

 WHERE [NOT] EXISTS (subquery)

 Notice that subqueries that are introduced with EXISTS are different from other
subqueries in the following ways:

 The keyword EXISTS is not preceded by a column name, constant, or other expression.

 The select list of a subquery introduced by EXISTS almost always consists of an asterisk
(*). There is no reason to list column names because you are just testing whether rows
that meet the conditions specified in the subquery exist.

