
13/11/1445

1

جامعة طرابلس
كلية تقنية المعلومات

Advanced Databasesقواعد البياʭت المتقدمة
IT IS-325

 عبدالسلام منصور الشريف .د
a.abdoessalam@uot.edu.ly

 III استرجاع البياʭت – الخامسةالمحاضرة
III Retrieving Data

Advanced Database Lecture 3

Contents
 Retrieving Data

 SELECT
 SUBQUERIES

Advanced Database Lecture 3

13/11/1445

2

SELECT [ALL / DISTINCT] expr1 [AS col1], expr2 [AS col2] ;

FROM tablename WHERE condition

SELECT FROM WHERE
......

Select Statement - General Structure

Sub-Queries

 A subquery is a query that is nested inside a SELECT, INSERT,
UPDATE, or DELETE statement, or inside another subquery.

 A subquery is also called an inner query or inner select, while the
statement containing a subquery is also called an outer query or
outer select.

 A subquery nested in the outer SELECT statement has the following
components:

 A regular SELECT query including the regular select list components.

 A regular FROM clause including one or more table or view names.

 An optional WHERE clause.

 An optional GROUP BY clause.

 An optional HAVING clause.

13/11/1445

3

Sub-Queries

 A subquery can be used as an expression in the SELECT.

 A subquery can be nested inside the WHERE or HAVING clause of
an outer SELECT, INSERT, UPDATE, or DELETE statement, or
inside another subquery.

 Up to 32 levels of nesting is possible, although the limit varies based
on available memory and the complexity of other expressions in the
query.

 If a table appears only in a subquery and not in the outer query, then
columns from that table cannot be included in the output (the select
list of the outer query).

Sub-Queries

 Statements that include a subquery usually take one of these
formats:

 WHERE expression \[NOT] IN (subquery)

 WHERE expression comparison_operator \[ANY | ALL] (subquery)

 WHERE \[NOT] EXISTS (subquery)

 There are three basic types of subqueries. Those that:

 Operate on lists introduced with IN, or those that a comparison operator
modified by ANY or ALL.

 Are introduced with an unmodified comparison operator and must return a
single value.

 Are existence tests introduced with EXISTS.

13/11/1445

4

Sub-Queries

 A subquery is subject to the following restrictions:

 The select list of a subquery introduced with a comparison operator can
include only one expression or column name (except that EXISTS and IN
operate on SELECT * or a list, respectively).

 If the WHERE clause of an outer query includes a column name, it must be
join-compatible with the column in the subquery select list.

 Because they must return a single value, subqueries introduced by an
unmodified comparison operator (one not followed by the keyword ANY or
ALL) cannot include GROUP BY and HAVING clauses.

 The DISTINCT keyword cannot be used with subqueries that include
`GROUP BY.

Sub-Queries – in SELECT

List the student with their highest marks

SELECT Id,Name,

(SELECT MAX(Mark) FROM dbo.Semesters sem

WHERE stu.id = sem.StudentId

) Maxmark

FROM dbo.Students stu

13/11/1445

5

Sub-Queries – in FROM

 Find The max mark by semester type ordered by maxmark

SELECT SemesterType, Maxmark FROM

(SELECT SemesterType, MAX(Mark) Maxmark

FROM dbo.Semesters GROUP BY SemesterType

) sem

ORDER BY Maxmark DESC

Sub-Queries – in FROM

 The max of average mark

SELECT MAX(Avgmark) Maxavg

FROM (SELECT StudentId, AVG(Mark) Avgmark

 FROM dbo.Semesters GROUP BY StudentId) sem

13/11/1445

6

Sub-Queries – in WHERE

Students who have marks above the average

SELECT DISTINCT StudentId

FROM dbo.Semesters

WHERE Mark >

(SELECT AVG(Mark) FROM dbo.Semesters)

Sub-Queries – in WHERE. Cont.

Find information about student with marks above the average

SELECT stu.Id,stu.Name

FROM dbo.Students stu

WHERE Id in

(SELECT DISTINCT StudentId FROM dbo.Semesters

WHERE Mark > (SELECT AVG(Mark) FROM dbo.Semesters))

13/11/1445

7

Sub-Queries –ANY, SOME

 Compares a scalar value with a single-column set of
values. SOME and ANY are equivalent.

 SOME requires the scalar_expression to compare positively to at least one
value returned by the subquery.

scalar_expression { = | < > | ! = | > | > = | ! > | < | < = | ! < } { SOME | ANY } (subquery)

 SOME or ANY returns TRUE when the comparison specified is TRUE
for any pair (scalar_expression,x) where x is a value in the
single-column set; otherwise, returns FALSE.

 The =ANY operator is equivalent to IN.

 The <>ANY operator, not equivalent to NOT IN:
 <>ANY means not = a, or not = b, or not = c

 NOT IN means not = a, and not = b, and not = c

 <>ALL means the same as NOT IN

Sub-Queries – ANY, SOME

 List courses whose marks are greater than or equal to the
maximum mark of any classfication

SELECT DISTINCT CourseId FROM [dbo].[Semesters] sem

WHERE sem.Mark >= ANY (

SELECT MAX(sem.Mark) FROM [dbo].[Semesters] sem

INNER JOIN [dbo].[Courses] cou

ON sem.CourseId = cou.Id

GROUP BY cou.Classification)

13/11/1445

8

Sub-Queries –ALL

Compares a scalar value with all column set of values.

scalar_expression { = | < > | ! = | > | > = | ! > | < | < = | ! < } ALL (subquery)

ALL requires the scalar_expression to compare positively to all
of the values returned by the subquery.

Sub-Queries – EXISTS

 When a subquery is introduced with the keyword EXISTS, the
subquery functions as an existence test.

 The WHERE clause of the outer query tests whether the rows that
are returned by the subquery exist.

 The subquery does not actually produce any data; it returns a value
of TRUE or FALSE.

 WHERE [NOT] EXISTS (subquery)

 Notice that subqueries that are introduced with EXISTS are different from other
subqueries in the following ways:

 The keyword EXISTS is not preceded by a column name, constant, or other expression.

 The select list of a subquery introduced by EXISTS almost always consists of an asterisk
(*). There is no reason to list column names because you are just testing whether rows
that meet the conditions specified in the subquery exist.

