
25/12/1445

1

جامعة طرابلس
كلية تقنية المعلومات

Advanced Databasesقواعد البياʭت المتقدمة
ITSE325

 عبدالسلام منصور الشريف .د
a.abdoessalam@uot.edu.ly

 Iلغة التحكم في البياʭت – عاشرالثانية المحاضرة
Data Control Language I

Contents
 Login Authentication
 Database User Accounts and Roles
 Types of Roles
 Permission Validation

25/12/1445

2

Login Authentication

3

AUTHENTICATION

SQL Server
Verifies
Trusted Connection

SQL Server
Verifies Name
and Password

OR
SQL
Server

Windows
Group or User Windows Server

SQL Server
Login Account

Database User Accounts and Roles

4

SQL Server Assigns
Logins to User Accounts
and Roles

Database
User

Database Role

Windows Server
Group User

SQL Server
Login Account

SQL Server
Verifies
Trusted Connection

SQL Server
Verifies Name
and Password

SQL
Server

Windows
Server

OR

25/12/1445

3

Types of Roles

 Fixed Server Roles
 Group administrative privileges at the server level

 Fixed Database Roles
 Group administrative privileges at the database level

 User-defined Database Roles
 Represent work defined by a group of employees within an

organization

5

Permission Validation

6

SQL Server
Checks
Permissions

Permissions OK;
Performs Command

Permissions not OK;
Returns Error

2 3

SELECT * FROM Members

Database User
Executes Command

1

25/12/1445

4

 To effectively protect SQL Server, you must be able to provide
approved users with the access they need to specific SQL
Server resources, without compromising those or other
resources, a process that involves the use of three important
types of components:

 Principals
 Entities that can be authenticated to access the SQL Server

resources. For example, your Windows login can be configured as a
principal that allows you to connect to a SQL Server database. SQL
Server supports three types of principals: logins, users, and roles.
 Logins exist at the server level
 Users exist at the database level
 Roles can exist at either level.

SQL Server Security Components

 Securables
 SQL Server resources that can be accessed by a principal.

Securables are the actual resources you’re trying to protect, whether
at the server level (e.g., availability groups), database level (e.g., full-
text catalog), or the schema level (e.g., table or function).

 Permissions
 Types of access granted on a securable to a specific principal. For

example, you can grant a Windows login (the principal) the ability to
view data (the permission) in a specific database schema (the
securable).

SQL Server Security Components

25/12/1445

5

SQL Server Security Components

SQL Server Security Components

25/12/1445

6

SQL Server–Types of Users

SQL Server–Types of Users

 To determine the needed user:
 First ask yourself, does the person or group that needs to

access the database have a login?

 Logins in the master database are common for the people who
manage the SQL Server and for people who need to access
many or all of the database on the instance of SQL Server.

 For this situation, you will create a SQL user with login. The
database user is the identity of the login when it is connected
to a database. The database user can use the same name as the
login, but that is not required.

25/12/1445

7

 SQL Server–authenticated logins are authenticated by the
Database Engine instance rather than through the host
operating system or a domain controller.

 SQL Server–authenticated login passwords are stored
within the master database.

SQL Server–Authenticated Logins

 To create an authenticated login use:

SQL Server–Authenticated Logins

CREATE LOGIN login_name
{ WITH PASSWORD = 'password'| FROM WINDOWS }

CREATE LOGIN data_entry
WITH PASSWORD = 'testme';

 To create an authenticated login data_entry with password:

CREATE LOGIN [DESKTOP-126\Abdoessalam]
FROM WINDOWS;

 To create an authenticated login from Windows user:

25/12/1445

8

 After creating a login, the login can connect to SQL
Server, but only has the permissions granted to the public
role.

 Consider performing some of the following activities.

 To connect to a database, create a database user for the login.

 Create a user-defined server role by using CREATE SERVER
ROLE. Use ALTER SERVER ROLE ... ADD MEMBER to add the
new login to the user-defined server role.

 Use sp_addsrvrolemember to add the login to a fixed server
role.

 Use the GRANT statement, to grant server-level permissions
to the new login or to a role containing the login.

SQL Server–Authenticated Logins

 In order for the SQL server login to access a
database, a database user must be created:

SQL Server–Database Users

CREATE USER user_name FROM LOGIN login_name

CREATE USER data_entry FROM LOGIN data_entry;

 To create a database user data_entry user for the current
database:

25/12/1445

9

 Creating a user grants access to a database but does
not automatically grant any access to the objects in a
database.

 After creating a user, common actions are to add
users to database roles that have permission to
access database objects, or grant object permissions
to the user.

SQL Server–Database Users

 Every SQL Server securable has associated
permissions that can be granted to a principal.

 Permissions in the Database Engine are managed at
the server level assigned to logins and server roles.

 Permissions at the database level assigned to database
users and database roles.

SQL Server - Permissions

25/12/1445

10

 Permissions have a parent/child hierarchy:
 If you grant SELECT permission on a database, that permission

includes SELECT permission on all (child) schemas in the
database.

 If you grant SELECT permission on a schema, it includes
SELECT permission on all the (child) tables and views in the
schema.

 The permissions are transitive:
 If you grant SELECT permission on a database, it includes SELECT

permission on all (child) schemas, and all (grandchild) tables and views.

 Permissions also have covering permissions. The CONTROL
permission on an object, normally gives you all other
permissions on the object.

How do Permissions work?

 Because both the parent/child hierarchy and the
covering hierarchy can act on the same permission,
the permission system can get complicated. For
example, let's take a testtable table , in a
testschema , in a ITDatabase:

 CONTROL permission on the testtable table
includes all the other permissions on the table, including
ALTER, SELECT, INSERT, UPDATE, DELETE, and some
other permissions.

 SELECT permission on the testschema that owns the
table includes the SELECT permission on the testtable
table.

How do Permissions work?

25/12/1445

11

 To allow users to have permissions on objects use:

How do Permissions work?

GRANT { ALL [PRIVILEGES] }
[ON [class ::] securable]
TO principal [,...n]
[WITH GRANT OPTION] [AS principal]

GRANT SELECT ON OBJECT::testschema.testable
TO data_entry;

 To give the user data_entry a select permission on the
testable use:

Grant Permissions

GRANT SELECT ON OBJECT::testtable TO data_entry;

GRANT CONTROL ON OBJECT::testtable TO data_entry;

GRANT SELECT ON SCHEMA::testschema TO data_entry;

GRANT CONTROL ON SCHEMA::testschema TO data_entry;

GRANT SELECT ON DATABASE::ITDatabase TO data_entry;

GRANT CONTROL ON DATABASE::ITDatabase TO data_entry;

