
28/11/1443

1

جامعة طرابلس
كلية تقنية المعلومات

Advanced Databasesقواعد البياʭت المتقدمة
ITSE312

 عبدالسلام منصور الشريف .د
a.abdoessalam@uot.edu.ly

 الإجراءات المخزنة– الثامنةالمحاضرة
Stored Procedures

Contents
 Programming Database

 Stored Procedures

28/11/1443

2

Stored Procedures

A stored procedure is an executable object stored in a database.
SQL Server supports:

 Stored procedures:

 One or more SQL statements precompiled into a single executable
procedure.

 Extended stored procedures:

 C or C++ dynamic-link libraries (DLL) written to the SQL Server Open
Data Services API for extended stored procedures. The Open Data
Services API extends the capabilities of stored procedures to include C
or C++ code.

Stored Procedures

 Calling a stored procedure on the data source can provide:

 Higher performance

 SQL statements are parsed and compiled when procedures are created. This
overhead is then saved when the procedures are executed.

 Reduced network overhead

 Executing a procedure instead of sending complex queries across the network can
reduce network traffic.

 Greater consistency

 If an organization's rules are implemented in a central resource, such as a stored procedure, they
can be coded, tested, and debugged once. Individual programmers can then use the tested
stored procedures instead of developing their own implementations.

 Greater accuracy

 Because stored procedures are usually developed by experienced programmers, they
tend to be more efficient and have fewer errors than code developed multiple times by
programmers of varying skill levels.

 Added functionality

 Extended stored procedures can use C and C++ features not available in Transact-SQL
statements.

28/11/1443

3

Stored Procedures

CREATE [OR ALTER] { PROC | PROCEDURE }
[schema_name.] procedure_name
[{ @parameter_name [type_schema_name.] data_type }

[= default] [OUT | OUTPUT | [READONLY]
] [,...n]

[WITH <procedure_option> [,...n]]
AS { [BEGIN] sql_statement [;] [...n] [END] }
[;]
<procedure_option> ::=

[ENCRYPTION]
[RECOMPILE]
[EXECUTE AS Clause]

DROP { PROC | PROCEDURE } [IF EXISTS] { [schema_name.]
procedure } [,...n]

Stored Procedures

CREATE PROC What_DB_is_this
AS
SELECT DB_NAME() AS ThisDB;
GO

EXECUTE What_DB_is_this

CREATE PROC What_DB_is_that @ID INT
AS
SELECT DB_NAME(@ID) AS ThatDB;
GO

EXECUTE What_DB_is_that 2

28/11/1443

4

Stored Procedures

----- non paramertized proc
create proc dbo.getStudentSemesters09223333
as
select [Id],[SemesterType],[StudentId],[CourseId],

[Mark],[IsSuspended],[TeachedBy],[EnrollmentOn]
from [ITDatabase].[dbo].[Semesters]
where StudentId = '09223333'

go
-- exec
exec dbo.getStudentSemesters09223333

Stored Procedures

----- paramertized proc
create proc dbo.getStudentSemesters

@StudentId char(10)
as
select [Id],[SemesterType],[StudentId],[CourseId],

[Mark],[IsSuspended],[TeachedBy],[EnrollmentOn]
from [ITDatabase].[dbo].[Semesters]
where StudentId = @StudentId

go
-- exec
exec dbo.getStudentSemesters '09223333'

28/11/1443

5

Stored Procedures

-------- non data proc
create proc dbo.MathTutor

@m1 smallint,
@m2 smallint,
@result smallint output

as
set @result = @m1 * @m2;

go
-- exec
declare @answer smallint;
exec MathTutor 5,6, @answer output;
select 'The result is: ', @answer;

Procedural Language –TRY … CATCH

 Implements error handling for Transact-SQL. A group of Transact-
SQL statements can be enclosed in a TRY block. If an error
occurs in the TRY block, control is passed to another group of
statements that is enclosed in a CATCH block.

BEGIN TRY
{ sql_statement | statement_block }

END TRY
BEGIN CATCH

[{ sql_statement | statement_block }]
END CATCH
[;]

28/11/1443

6

Procedural Language –TRY … CATCH
 In the scope of a CATCH block, the following system functions can be

used to obtain information about the error that caused the CATCH block
to be executed:

 ERROR_NUMBER() returns the number of the error.

 ERROR_SEVERITY() returns the severity.

 ERROR_STATE() returns the error state number.

 ERROR_PROCEDURE() returns the name of the stored procedure or
trigger where the error occurred.

 ERROR_LINE() returns the line number inside the routine that caused
the error.

 ERROR_MESSAGE() returns the complete text of the error message.
The text includes the values supplied for any substitutable parameters,
such as lengths, object names, or times.

Stored Procedures – Exception Handling
CREATE PROCEDURE usp_GetErrorInfo
AS
SELECT

ERROR_NUMBER() AS ErrorNumber
,ERROR_SEVERITY() AS ErrorSeverity
,ERROR_STATE() AS ErrorState
,ERROR_PROCEDURE() AS ErrorProcedure
,ERROR_LINE() AS ErrorLine
,ERROR_MESSAGE() AS ErrorMessage;

GO

---exec
BEGIN TRY

SELECT 1/0; -- Generate divide-by-zero error.
END TRY
BEGIN CATCH

-- Execute error retrieval routine.
EXECUTE usp_GetErrorInfo;

END CATCH;

28/11/1443

7

Stored Procedures – Exception Handling
create table dbo.TableNoKey (ColA int, ColB int)
create table dbo.TableWithKey (ColA int primary key, ColB int)
go

create proc dbo.AddData @a int, @b int
as
begin try
insert dbo.TableNoKey values (@a, @b)
insert dbo.TableWithKey values (@a, @b)

end try
begin catch

select ERROR_NUMBER() ErrorNumber,
ERROR_MESSAGE() [Message];

end catch
GO

--exec
exec dbo.AddData 1, 1
exec dbo.AddData 2, 2
exec dbo.AddData 1, 3 --violates the primary key

Stored Procedures – Exception Handling
alter proc dbo.AddData @a int, @b int
as
begin try
begin tran
insert dbo.TableNoKey values (@a, @b)
insert dbo.TableWithKey values (@a, @b)
commit tran

end try
begin catch

rollback tran
select ERROR_NUMBER() ErrorNumber,

ERROR_MESSAGE() [Message]
end catch

go

exec dbo.AddData 1, 1 -- will not exec duplicate and within same trans

