
28/11/1443

1

جامعة طرابلس
كلية تقنية المعلومات

Advanced Databasesقواعد البياʭت المتقدمة
ITSE312

 عبدالسلام منصور الشريف .د
a.abdoessalam@uot.edu.ly

 الإجراءات المخزنة– الثامنةالمحاضرة
Stored Procedures

Contents
 Programming Database

 Stored Procedures

28/11/1443

2

Stored Procedures

A stored procedure is an executable object stored in a database.
SQL Server supports:

 Stored procedures:

 One or more SQL statements precompiled into a single executable
procedure.

 Extended stored procedures:

 C or C++ dynamic-link libraries (DLL) written to the SQL Server Open
Data Services API for extended stored procedures. The Open Data
Services API extends the capabilities of stored procedures to include C
or C++ code.

Stored Procedures

 Calling a stored procedure on the data source can provide:

 Higher performance

 SQL statements are parsed and compiled when procedures are created. This
overhead is then saved when the procedures are executed.

 Reduced network overhead

 Executing a procedure instead of sending complex queries across the network can
reduce network traffic.

 Greater consistency

 If an organization's rules are implemented in a central resource, such as a stored procedure, they
can be coded, tested, and debugged once. Individual programmers can then use the tested
stored procedures instead of developing their own implementations.

 Greater accuracy

 Because stored procedures are usually developed by experienced programmers, they
tend to be more efficient and have fewer errors than code developed multiple times by
programmers of varying skill levels.

 Added functionality

 Extended stored procedures can use C and C++ features not available in Transact-SQL
statements.

28/11/1443

3

Stored Procedures

CREATE [OR ALTER] { PROC | PROCEDURE }
[schema_name.] procedure_name
[{ @parameter_name [type_schema_name.] data_type }

[= default] [OUT | OUTPUT | [READONLY]
] [,...n]

[WITH <procedure_option> [,...n]]
AS { [BEGIN] sql_statement [;] [...n] [END] }
[;]
<procedure_option> ::=

[ENCRYPTION]
[RECOMPILE]
[EXECUTE AS Clause]

DROP { PROC | PROCEDURE } [IF EXISTS] { [schema_name.]
procedure } [,...n]

Stored Procedures

CREATE PROC What_DB_is_this
AS
SELECT DB_NAME() AS ThisDB;
GO

EXECUTE What_DB_is_this

CREATE PROC What_DB_is_that @ID INT
AS
SELECT DB_NAME(@ID) AS ThatDB;
GO

EXECUTE What_DB_is_that 2

28/11/1443

4

Stored Procedures

----- non paramertized proc
create proc dbo.getStudentSemesters09223333
as
select [Id],[SemesterType],[StudentId],[CourseId],

[Mark],[IsSuspended],[TeachedBy],[EnrollmentOn]
from [ITDatabase].[dbo].[Semesters]
where StudentId = '09223333'

go
-- exec
exec dbo.getStudentSemesters09223333

Stored Procedures

----- paramertized proc
create proc dbo.getStudentSemesters

@StudentId char(10)
as
select [Id],[SemesterType],[StudentId],[CourseId],

[Mark],[IsSuspended],[TeachedBy],[EnrollmentOn]
from [ITDatabase].[dbo].[Semesters]
where StudentId = @StudentId

go
-- exec
exec dbo.getStudentSemesters '09223333'

28/11/1443

5

Stored Procedures

-------- non data proc
create proc dbo.MathTutor

@m1 smallint,
@m2 smallint,
@result smallint output

as
set @result = @m1 * @m2;

go
-- exec
declare @answer smallint;
exec MathTutor 5,6, @answer output;
select 'The result is: ', @answer;

Procedural Language –TRY … CATCH

 Implements error handling for Transact-SQL. A group of Transact-
SQL statements can be enclosed in a TRY block. If an error
occurs in the TRY block, control is passed to another group of
statements that is enclosed in a CATCH block.

BEGIN TRY
{ sql_statement | statement_block }

END TRY
BEGIN CATCH

[{ sql_statement | statement_block }]
END CATCH
[;]

28/11/1443

6

Procedural Language –TRY … CATCH
 In the scope of a CATCH block, the following system functions can be

used to obtain information about the error that caused the CATCH block
to be executed:

 ERROR_NUMBER() returns the number of the error.

 ERROR_SEVERITY() returns the severity.

 ERROR_STATE() returns the error state number.

 ERROR_PROCEDURE() returns the name of the stored procedure or
trigger where the error occurred.

 ERROR_LINE() returns the line number inside the routine that caused
the error.

 ERROR_MESSAGE() returns the complete text of the error message.
The text includes the values supplied for any substitutable parameters,
such as lengths, object names, or times.

Stored Procedures – Exception Handling
CREATE PROCEDURE usp_GetErrorInfo
AS
SELECT

ERROR_NUMBER() AS ErrorNumber
,ERROR_SEVERITY() AS ErrorSeverity
,ERROR_STATE() AS ErrorState
,ERROR_PROCEDURE() AS ErrorProcedure
,ERROR_LINE() AS ErrorLine
,ERROR_MESSAGE() AS ErrorMessage;

GO

---exec
BEGIN TRY

SELECT 1/0; -- Generate divide-by-zero error.
END TRY
BEGIN CATCH

-- Execute error retrieval routine.
EXECUTE usp_GetErrorInfo;

END CATCH;

28/11/1443

7

Stored Procedures – Exception Handling
create table dbo.TableNoKey (ColA int, ColB int)
create table dbo.TableWithKey (ColA int primary key, ColB int)
go

create proc dbo.AddData @a int, @b int
as
begin try
insert dbo.TableNoKey values (@a, @b)
insert dbo.TableWithKey values (@a, @b)

end try
begin catch

select ERROR_NUMBER() ErrorNumber,
ERROR_MESSAGE() [Message];

end catch
GO

--exec
exec dbo.AddData 1, 1
exec dbo.AddData 2, 2
exec dbo.AddData 1, 3 --violates the primary key

Stored Procedures – Exception Handling
alter proc dbo.AddData @a int, @b int
as
begin try
begin tran
insert dbo.TableNoKey values (@a, @b)
insert dbo.TableWithKey values (@a, @b)
commit tran

end try
begin catch

rollback tran
select ERROR_NUMBER() ErrorNumber,

ERROR_MESSAGE() [Message]
end catch

go

exec dbo.AddData 1, 1 -- will not exec duplicate and within same trans

