
1

Logic Programming (ITSE301)

Introduction to

Natural Language Processing

2

What is NLP?

Natural Language Processing (NLP) is the

study of human languages using computers.

Human languages are studied by many

research groups.

As computer scientists we are interested in

the algorithm and data structures that are

useful for analyzing human languages.

3

NLP Goals

 Computers would be a lot more useful if

they could handle our email, do our library

search, talk to us …

But this is not an easy task.

How can we make computers handle human

languages?

4

Some NLP Applications

Spelling correction, grammar checking …

Better search engines

 Information Extraction (IE)

New interfaces:

Speech recognition (and text-to-speech)

Dialogue systems

Machine translation

5

Objectives

The main goal of this serious of lectures is to

introduce you to the NLP problems &

solutions

At the end you should:

Agree that NLP is interesting

Write small programs that analyze human

languages

6

Language Levels

مستويات تحليل اللغة

Phonetics/phonology: The study of sounds that
make words علم الصوتيات

Morphology: The study of written words and their
structure.دراسة الكلمات المكتوبة

 Syntax: The study of the structure of phrases and
sentences.دراسة تركيب الجمل والعبارات

 Semantics: The study of the literal meaning? دراسة
المعاني

 Pragmatics: The study of sentences in their context
“It’s cold in here!” دراسة الجمل مع السياق الذي تذكر فيه

7

NLP problems: Ambiguityالغموض

If there are more than one interpretation of a

sentence then it is ambiguous.

Ambiguity can arise at all levels of language

processing
 Morphology (can has many meaning)

 Syntax: The girl eats the apple with a smile –The girl eats the apple with a bruise.

 Semantics: Water runs down the hill. vs. The river runs down the hill.

 Pragmatics: Can you pass the salt. (Sue!, Yes, No). It’s cold in here!

8

Syntax النحو

Syntax is the study of the structure of

sentences

Syntactic objects are words, groups of

words, syntactic categories such as NOUN

and NOUN PHRASE, and syntactic roles

such as SUBJECT and MODIFIER

9

Structure in Strings

Some words: the, a, small, nice, big, very, boy, girl, sees, likes,
apples

 Some good sentences:

the boy likes apples

the small girl likes the big girl

a very small nice boy sees a very nice boy

 Some bad sentences:

*the boy the apple

*small boy likes nice apples

Can we find subsequences of words (constituents)
which in some way behave alike?

10

Structure in Strings

Proposal 1

Some words: the a small nice big very boy girl sees likes cat

 Some good sentences:

(the) boy (likes the cat)

(the small) girl (likes the big girl)

(a very small nice) boy (sees a very nice boy)

 Some bad sentences:

*(the) boy (the girl)

*(small) boy (likes the nice girl)

11

Structure in Strings

Proposal 2

Some words: the a small nice big very boy girl sees likes

 Some good sentences:

(the boy) likes (the cat)

(the small girl) likes (the big girl)

(a very small nice boy) sees (a very nice boy)

 Some bad sentences:

*(the boy) (the cat)

*(small boy) likes (the nice girl)

• This is better proposal: fewer types of constituents

12

More Structure in Strings

Some words: the a small nice big very boy girl sees likes cat

 Some good sentences:

((the) boy) likes ((the) cat)

((the) (small) girl) likes ((the) (big) girl)

((a) ((very) small) (nice) boy) sees ((a) ((very) nice) girl)

 Some bad sentences:

*((the) boy) ((the) cat)

*((small) boy) likes ((the) (nice) girl)

13

From Substrings to Trees

(((the) boy) likes ((the) cat))

boy

the

likes
cat

the

14

Node Labels?

((the) boy) likes ((the) cat)

Group words by their part-of-speech (POS):

Noun (N), verb (V), adjective (Adj), adverb (Adv),

determiner (Det)

Category of constituent: XP, where X is POS

NP, AdjP, AdvP, VP, and S

15

Node Labels

(((the/Det) boy/N) likes/V ((the/Det) cat/N))

N

the

likes

N

the

DetP

NP NP

DetP

S

boy cat

16

Word Classes = POS

Possible basic set: N, V, Adj, Adv, Prep,
Det, Aux

2 supertypes: open- and closed-class

Open: N, V, Adj, Adv

Closed: Prep, Det, Aux

Many subtypes:

eats/V  eat/VB, eat/VBP, eats/VBZ,
ate/VBD, eaten/VBN, eating/VBG,

17

Can we use prolog to write some simple

grammar rules?

Yes! Prolog comes with a grammar called

Definite Clause Grammar (DCG)

18

Definite Clause Grammars

A grammar is a precise definition of which

sequences of words or symbols belong to some

language.

Grammars are particularly useful for natural

language processing

But they can be used to process any precisely

defined 'language', such as the commands allowed

in some human-computer interface.

19

Grammar rules

 In general, a grammar is defined as a collection of grammar rules. These are

sometimes called rewrite rules, since they show how we can rewrite one

thing as something else.

 In linguistics, a typical grammar rule for English might look like this:

sentence  noun_phrase, verb_phrase

e.g “ The man ran.”

 This would show that, in English, a sentence could be constructed as a noun
phrase, followed by a verb phrase. More example:

noun_phrase  noun

noun_phrase  determiner, noun

verb_phrase  intransitive_verb

verb_phrase  transitive_verb, noun_phrase

20

Terminals and non-terminals

 In these rules, symbols like sentence, noun, verb, etc., are

used to show the structure of the language

 Such symbols are called non-terminal symbols, because they

can be further decomposed

 In defining grammar rules for noun, we can write:

noun  [ball]

noun  [dog]

noun  [stick]

These are called the terminal symbols, because they can't be

expanded any more.

21

Grammar rules in Prolog

 Prolog allows us to directly implement grammars of this

form.

 So, we can write the same rules as:

sentence --> noun_phrase, verb_phrase.

noun_phrase --> noun.

noun_phrase --> determiner, noun.

verb_phrase --> intransitive_verb.

verb_phrase --> transitive_verb, noun_phrase.

 Here, each non-terminal symbol is like a predicate with no

arguments.

22

Grammar rules in Prolog

 Terminal symbols are represented as lists containing one

atom

noun --> [ball].

noun --> [dog].

noun --> [stick].

noun --> [‘Tripoli'].

23

How Prolog uses grammar rules

 Prolog converts DCG rules into an internal representation

which makes them conventional Prolog clauses.

This can be seen by ‘listing’ the consulted code.

 Non-terminals are given two extra arguments, so:

sentence --> noun_phrase, verb_phrase.

becomes: sentence(In, Out) :-

noun_phrase(In, Temp),

verb_phrase(Temp, Out).

24

How Prolog uses grammar rules

 This means: some sequence of symbols In, can be

recognised as a sentence, leaving Out as a remainder, if

a noun phrase can be found at the start of In, leaving

Temp as a remainder,

and a verb phrase can be found at the start of Temp,

leaving Out as a remainder.

25

How Prolog uses grammar rules (2)

 Terminal symbols are represented using the special

predicate 'C', which has three arguments. So:

noun --> [ball].

becomes: noun(In, Out) :-

'C'(In, ball, Out).

 This means: some sequence of symbols In can be

recognised as a noun, leaving Out as a remainder, if the

atom ball can be found at the start of that sequence, leaving

Out as a remainder.

26

How Prolog uses grammar rules (2)

 The built-in predicate 'C' is very simply defined:

'C'([Term|List], Term, List).

where it succeeds if its second argument is the head of its

first argument, and the third argument is the remainder.

27

A very simple grammar

Here's a very simple little grammar, which defines

a very small subset of English:

sentence --> noun, verb_phrase.

verb_phrase --> verb, noun.

noun --> [ali].

noun --> [salem].

noun --> [apples].

verb --> [likes].

verb --> [hates].

verb --> [runs].

28

A very simple grammar

We can now use the grammar to test whether some

sequence of symbols belongs to the language:

| ?- sentence([bob, likes, apples], []).

yes

| ?- sentence([bob, runs], []).

no

29

A very simple grammar (2)

By specifying that the remainder is an empty list

we can use the grammar to generate all of the

possible sentences in the language:

| ?- sentence(X, []).

X = [bob,likes,bob] ? ;

X = [bob,likes,david] ? ;

X = [bob,likes,apples] ? ;

X = [bob,hates,bob] ? ;

X = [bob,hates,david] ? ;

:

30

Adding Arguments

 We can add our own arguments to the non-terminals in

DCG rules to improve our grammar.

 As an example, we can very simply add number agreement

(singular or plural) between the subject of an English

sentence and the main verb.

sentence --> noun(Num), verb_phrase(Num).

verb_phrase(Num) --> verb(Num), noun(_).

noun(singular) --> [bob].

noun(plural) --> [students].

verb(singular) --> [likes].

verb(plural) --> [like].

31

Adding Arguments

 So now we can ask prolog:

| ?- sentence([bob, likes, students], []).

yes

| ?- sentence([students, likes, bob], []).

no

