
1

Logic Programming (ITSE301)

Introduction to

Natural Language Processing

2

What is NLP?

Natural Language Processing (NLP) is the

study of human languages using computers.

Human languages are studied by many

research groups.

As computer scientists we are interested in

the algorithm and data structures that are

useful for analyzing human languages.

3

NLP Goals

 Computers would be a lot more useful if

they could handle our email, do our library

search, talk to us …

But this is not an easy task.

How can we make computers handle human

languages?

4

Some NLP Applications

Spelling correction, grammar checking …

Better search engines

 Information Extraction (IE)

New interfaces:

Speech recognition (and text-to-speech)

Dialogue systems

Machine translation

5

Objectives

The main goal of this serious of lectures is to

introduce you to the NLP problems &

solutions

At the end you should:

Agree that NLP is interesting

Write small programs that analyze human

languages

6

Language Levels

مستويات تحليل اللغة

Phonetics/phonology: The study of sounds that
make words علم الصوتيات

Morphology: The study of written words and their
structure.دراسة الكلمات المكتوبة

 Syntax: The study of the structure of phrases and
sentences.دراسة تركيب الجمل والعبارات

 Semantics: The study of the literal meaning? دراسة
المعاني

 Pragmatics: The study of sentences in their context
“It’s cold in here!” دراسة الجمل مع السياق الذي تذكر فيه

7

NLP problems: Ambiguityالغموض

If there are more than one interpretation of a

sentence then it is ambiguous.

Ambiguity can arise at all levels of language

processing
 Morphology (can has many meaning)

 Syntax: The girl eats the apple with a smile –The girl eats the apple with a bruise.

 Semantics: Water runs down the hill. vs. The river runs down the hill.

 Pragmatics: Can you pass the salt. (Sue!, Yes, No). It’s cold in here!

8

Syntax النحو

Syntax is the study of the structure of

sentences

Syntactic objects are words, groups of

words, syntactic categories such as NOUN

and NOUN PHRASE, and syntactic roles

such as SUBJECT and MODIFIER

9

Structure in Strings

Some words: the, a, small, nice, big, very, boy, girl, sees, likes,
apples

 Some good sentences:

the boy likes apples

the small girl likes the big girl

a very small nice boy sees a very nice boy

 Some bad sentences:

*the boy the apple

*small boy likes nice apples

Can we find subsequences of words (constituents)
which in some way behave alike?

10

Structure in Strings

Proposal 1

Some words: the a small nice big very boy girl sees likes cat

 Some good sentences:

(the) boy (likes the cat)

(the small) girl (likes the big girl)

(a very small nice) boy (sees a very nice boy)

 Some bad sentences:

*(the) boy (the girl)

*(small) boy (likes the nice girl)

11

Structure in Strings

Proposal 2

Some words: the a small nice big very boy girl sees likes

 Some good sentences:

(the boy) likes (the cat)

(the small girl) likes (the big girl)

(a very small nice boy) sees (a very nice boy)

 Some bad sentences:

*(the boy) (the cat)

*(small boy) likes (the nice girl)

• This is better proposal: fewer types of constituents

12

More Structure in Strings

Some words: the a small nice big very boy girl sees likes cat

 Some good sentences:

((the) boy) likes ((the) cat)

((the) (small) girl) likes ((the) (big) girl)

((a) ((very) small) (nice) boy) sees ((a) ((very) nice) girl)

 Some bad sentences:

*((the) boy) ((the) cat)

*((small) boy) likes ((the) (nice) girl)

13

From Substrings to Trees

(((the) boy) likes ((the) cat))

boy

the

likes
cat

the

14

Node Labels?

((the) boy) likes ((the) cat)

Group words by their part-of-speech (POS):

Noun (N), verb (V), adjective (Adj), adverb (Adv),

determiner (Det)

Category of constituent: XP, where X is POS

NP, AdjP, AdvP, VP, and S

15

Node Labels

(((the/Det) boy/N) likes/V ((the/Det) cat/N))

N

the

likes

N

the

DetP

NP NP

DetP

S

boy cat

16

Word Classes = POS

Possible basic set: N, V, Adj, Adv, Prep,
Det, Aux

2 supertypes: open- and closed-class

Open: N, V, Adj, Adv

Closed: Prep, Det, Aux

Many subtypes:

eats/V eat/VB, eat/VBP, eats/VBZ,
ate/VBD, eaten/VBN, eating/VBG,

17

Can we use prolog to write some simple

grammar rules?

Yes! Prolog comes with a grammar called

Definite Clause Grammar (DCG)

18

Definite Clause Grammars

A grammar is a precise definition of which

sequences of words or symbols belong to some

language.

Grammars are particularly useful for natural

language processing

But they can be used to process any precisely

defined 'language', such as the commands allowed

in some human-computer interface.

19

Grammar rules

 In general, a grammar is defined as a collection of grammar rules. These are

sometimes called rewrite rules, since they show how we can rewrite one

thing as something else.

 In linguistics, a typical grammar rule for English might look like this:

sentence noun_phrase, verb_phrase

e.g “ The man ran.”

 This would show that, in English, a sentence could be constructed as a noun
phrase, followed by a verb phrase. More example:

noun_phrase noun

noun_phrase determiner, noun

verb_phrase intransitive_verb

verb_phrase transitive_verb, noun_phrase

20

Terminals and non-terminals

 In these rules, symbols like sentence, noun, verb, etc., are

used to show the structure of the language

 Such symbols are called non-terminal symbols, because they

can be further decomposed

 In defining grammar rules for noun, we can write:

noun [ball]

noun [dog]

noun [stick]

These are called the terminal symbols, because they can't be

expanded any more.

21

Grammar rules in Prolog

 Prolog allows us to directly implement grammars of this

form.

 So, we can write the same rules as:

sentence --> noun_phrase, verb_phrase.

noun_phrase --> noun.

noun_phrase --> determiner, noun.

verb_phrase --> intransitive_verb.

verb_phrase --> transitive_verb, noun_phrase.

 Here, each non-terminal symbol is like a predicate with no

arguments.

22

Grammar rules in Prolog

 Terminal symbols are represented as lists containing one

atom

noun --> [ball].

noun --> [dog].

noun --> [stick].

noun --> [‘Tripoli'].

23

How Prolog uses grammar rules

 Prolog converts DCG rules into an internal representation

which makes them conventional Prolog clauses.

This can be seen by ‘listing’ the consulted code.

 Non-terminals are given two extra arguments, so:

sentence --> noun_phrase, verb_phrase.

becomes: sentence(In, Out) :-

noun_phrase(In, Temp),

verb_phrase(Temp, Out).

24

How Prolog uses grammar rules

 This means: some sequence of symbols In, can be

recognised as a sentence, leaving Out as a remainder, if

a noun phrase can be found at the start of In, leaving

Temp as a remainder,

and a verb phrase can be found at the start of Temp,

leaving Out as a remainder.

25

How Prolog uses grammar rules (2)

 Terminal symbols are represented using the special

predicate 'C', which has three arguments. So:

noun --> [ball].

becomes: noun(In, Out) :-

'C'(In, ball, Out).

 This means: some sequence of symbols In can be

recognised as a noun, leaving Out as a remainder, if the

atom ball can be found at the start of that sequence, leaving

Out as a remainder.

26

How Prolog uses grammar rules (2)

 The built-in predicate 'C' is very simply defined:

'C'([Term|List], Term, List).

where it succeeds if its second argument is the head of its

first argument, and the third argument is the remainder.

27

A very simple grammar

Here's a very simple little grammar, which defines

a very small subset of English:

sentence --> noun, verb_phrase.

verb_phrase --> verb, noun.

noun --> [ali].

noun --> [salem].

noun --> [apples].

verb --> [likes].

verb --> [hates].

verb --> [runs].

28

A very simple grammar

We can now use the grammar to test whether some

sequence of symbols belongs to the language:

| ?- sentence([bob, likes, apples], []).

yes

| ?- sentence([bob, runs], []).

no

29

A very simple grammar (2)

By specifying that the remainder is an empty list

we can use the grammar to generate all of the

possible sentences in the language:

| ?- sentence(X, []).

X = [bob,likes,bob] ? ;

X = [bob,likes,david] ? ;

X = [bob,likes,apples] ? ;

X = [bob,hates,bob] ? ;

X = [bob,hates,david] ? ;

:

30

Adding Arguments

 We can add our own arguments to the non-terminals in

DCG rules to improve our grammar.

 As an example, we can very simply add number agreement

(singular or plural) between the subject of an English

sentence and the main verb.

sentence --> noun(Num), verb_phrase(Num).

verb_phrase(Num) --> verb(Num), noun(_).

noun(singular) --> [bob].

noun(plural) --> [students].

verb(singular) --> [likes].

verb(plural) --> [like].

31

Adding Arguments

 So now we can ask prolog:

| ?- sentence([bob, likes, students], []).

yes

| ?- sentence([students, likes, bob], []).

no

