
Android OS - Memory Management in Android

Java has automatic memory management. It performs routine garbage collection to clean up

unused objects and free up the memory. However, it is very important for us to know how the

garbage collector works in order to manage the application’s memory effectively. Thus avoiding

OutOfMemoryError and/or StackOverflowError exceptions.

Memory structure

For effective memory management, JVM divides memory into Stack and Heap.

1. Stack Memory

Java Stack memory is used for the execution of the thread. They contain method-

specific values which that are short-lived and references to the other objects in the

heap that are getting referred from the method.

Example:
 public void methodA() {

 int a = 10;
 methodB(a);

}
public void methodB(int value) {

 int b = 10;
 //Rest of the code.

}

From the above picture:

- Variable “b” of “methodB” can be accessed by “methodB” only and not by “methodA”,

as “methodA” is in separate frame.

- Once the “methodB” execution is completed, the control will go to the calling function.

In this case, it’s “methodA”.

2

- Thus, the frame for “methodB” will be removed from the stack and all the variables in

that frame will also be flushed out. Likewise, for “methodA”.

2. Heap Memory

Java heap space is used to allocate memory to the objects. Whenever we create

Java/Kotlin objects, these will be allocated in the Heap memory. Garbage collection

process runs in the heap memory.

Garbage Collection Process

- Garbage Collection is a process of cleaning up the heap memory.

- Garbage collector identifies the unreferenced objects and removes them to free the

memory space.

- The objects that are being referenced are called ‘Live objects’ and those which are not

referenced are called ‘Dead objects’.

Process involved in Garbage collection.

Step 1: Marking

- Most of us think that Garbage Collector marks dead objects and removes them.

- In reality, it is exactly the opposite. Garbage Collector first finds the ‘Live objects’ and

marks them. This means the rest of the objects that are not marked are ‘Dead objects’.

Step 2: Normal Deletion

- Once Garbage Collector finds the ‘Dead objects’, it will remove them from the memory.

Step 3: Deletion with Compacting

- Memory allocator holds the reference of the free memory space and searches for the

same whenever new memory has to be allocated.

- In order to improve performance, it is better if we move all the referenced objects to one

place.

Basic GC process

This algorithm is called a mark-sweep-compact algorithm.

3

As the number of objects increase, the above process i.e., Marking, Deletion and Deletion with

compacting is inefficient. As per the empirical analysis, most objects are short-lived. Based on

this analysis, the heap structure is divided into three generations.

Heap Structure

The heap structure is divided into three divisions, Young Generation, Tenured or Old

Generation, and Permanent Generation.

Heap Structure

1. Young Generation – This is where all the new objects are allocated and aged. This

generation is split into Eden Space and Survivor spaces.

2. Eden Space – All new objects are allocated here. Once this space is full, minor Garbage

Collection will be triggered.

3. Survivor Space – After Minor GC, the live objects from Eden space will be moved to one

of the survivor spaces S0 or S1.

1. Young Generation : the below diagram describes the Garbage Collection process in Young Generation.

GC process in Young Generation

Note: at any given time only one survivor space has objects. Also, note that the age of the

object keeps increasing when switching between the survivor spaces.

2. Old Generation – long-surviving objects will be stored. As mentioned, a threshold will

be set to the object, on meeting which it is moved from the young generation to old or

tenured generation. Eventually the old generation needs to be collected. This event is

called a major garbage collection.

3. Permanent generation – This contains metadata required by the JVM to describe the

classes and methods used in the application.

 Improvements: In modern JVMs (from Java 8 onwards), the Permanent

Generation has been replaced with Metaspace to better handle dynamic memory

requirements.

 Metaspace: is not of fixed size and expands dynamically based on the application's

demand for loading classes and metadata. It resides in native memory rather than

in the JVM heap, which improves flexibility and reduces the likelihood of

PermGen-related errors.

Types of Garbage Collectors

 Serial GC

 Parallel GC

 Concurrent Mark and Sweep (CMS) collector

 G1 Collector

These garbage collectors have their own advantages and disadvantages. As Android Runtime

(ART) uses the concept of CMS collector.

GC Algorithms

- usually two different GC algorithms are needed

- One for the Young generation and the other for the Old generation.

- The default GC type used by ART is CMS Collector.

Concurrent Mark & Sweep (CMS) Collector

- This collector is used to avoid long pauses during the Garbage collection process.

- It scans heap memory using multiple threads.

- It uses parallel Stop the World mark-copy algorithm in the young generation.

- It uses concurrent mark-sweep algorithm in the Old Generation.

- Minor GC occurs in young generation whenever Eden Space is full. And this is “Stop the

World event”.

- GC process in Old generation is called Major GC.

6

Understanding Memory Usage in Android

The whole lecture can be divided into five parts:

1. Why care about memory usage?

2. How memory use impacts a device?

3. Evaluating application memory impact.

4. Reducing your application’s memory impact.

5. Closing notes.

Why care about memory usage?

Basically, there are three types of Android devices i.e.

1. Entry-level devices

2. Mid-tier devices

3. Premium devices

Out of these three types of devices, the entry-level devices have low memory and it can run

only those applications that require low memory.

So, if the memory usage of application increases then it will be difficult for the entry-level

devices to run that application and as a result, you will lose your users. This will affect the

Android ecosystem (i.e. a collection of apps, devices, and users)

NOTE: see video from 1:00 to 1:48 https://youtu.be/w7K0jio8afM?t=60

https://youtu.be/w7K0jio8afM?t=60

7

How memory use impacts a device?

- The memory of the Android device is divided into pages and each page is around 4

kilobytes. There are three types of pages:

1. Used Pages: These are the pages that are currently being used by the processes.

2. Cached Pages: These are the pages that the processes are using but some part of the

memory is also present in the main memory. So, to have a fast retrieval of data, we use

cached pages.

3. Free Pages: These are the pages that are free i.e. these are the memory space that can

be used to store something in the future.

The following graph shows the memory usage during the course of time.

In the beginning, there is nothing to run but with the due course of time, we started using more

applications and this, in turn, use more and more memory over time.

8

From the above graph

- We can see that in the beginning, when the device started running then there is a lot of

free memory available.

- But when we start using other applications then the free memory is being used.

- To avoid something bad that can happen due to low memory, the kernel performs an

operation called kswapd.

 kswapd stands for "kernel swap daemon," which is a component of the Linux

operating system kernel. kswapd is a background process responsible for managing

virtual memory and swap space.

 Its primary role is to ensure that there is enough physical memory (RAM) available

for running applications and processes.

 kswapd achieves this by freeing up unused memory pages or moving them to swap

space when necessary.

 In the process of kswapd , if the memory of the device goes down the kswapd threshold ,

then the Linux kernel starts finding some more free memory. So, what is does is, it reclaims

the cached pages and make it free. But the problem here is that if an app wants to reclaim

the memory present in the cached pages then it will take some time because at present

there is nothing in the cached page and data will be loaded from the device storage.

 But what if we continue using more and more application. In this case, due to the process

of kswapd , more cache memory will be cleared and a time will come when the device

starts to thrash. And this is a very bad thing because the device will be completely locked

up.

 In Android, we have a process called low memory killer, and this will pick a process from

the device and will completely kill that process. By doing so, you will get back all the

memory that the process was using. But what if the low memory killer, kills the process

that the user cares about?

 In Android, we have a priority list of applications and based on that priority list we remove

the app when the low memory killer comes into play.

9

 Following is the priority list in Android:

 Whenever the low memory killer comes into play, Then

- It first deletes the cached applications.

- Even after that, the memory usage keeps on increasing then the low memory killer kills

the previously opened applications.

- Again if the memory usage keeps on increasing, then the home application will be killed

and after that service, perceptible, foreground and persistent apps will be stopped or

killed.

- Again, if the memory usage keeps on increasing, then the system app will be stopped

and your phone will be rebooted. :(This is the worst user experience that we can have

in low memory devices or entry-level devices.

The example that we took was a 2GB device. The situation becomes worse when you are having

a 512MB device.

10

In the above example, we have very less memory and due to this the kswapd and low memory

killer will come into play very earlier. So, low memory killer will always be active and this will

result in bad user experience and we should try our best to develop an application which can

perform well in low memory situations also.

NOTE: see video from 2:30 to 12:20 https://youtu.be/w7K0jio8afM?t=150

https://youtu.be/w7K0jio8afM?t=150

11

Evaluating application memory impact

In the above section, we have seen that the memory of the device is divided into pages and the

Linux kernel system keep a track of the pages used by a certain application.

But the situation gets worse when the application starts using some shared memory.

For example, you can have an application that calls the Google Play Services and this, in turn,

result in page sharing between these two applications.

12

So, the problem that arises here is how to deal with this shared memory.

There are a few different ways that can be used to deal with these situations:

1. RSS (Resident Set Size): In this method, the application is responsible for all the shared

memory.

2. USS (Unique Shared Set): the application is not responsible for any of the shared pages.

3. PSS (Proportional Set Size): the app will be responsible for that number of pages that

are proportional to the number of processes sharing the shared memory. For example,

if the shared memory contains 4 pages and the memory is shared among two processes

then the app will be responsible for only two pages. If the shared page is 4 and the

number of sharing processes will be 3 then the app will handle 4/3 pages.

So, which method to choose from the above?

- If the shared memory is being used by the application only then we should use the RSS

approach.

- If the shared memory is taken by the Google Play Services then we should use the USS

approach.

But in general, it is very difficult to find if the app will require shared memory or not. So, we use

the Proportional Set Size method. PSS avoids over-counting or under-counting the overall

impact of shared pages on a device.

So, we can use PSS to find your application’s memory impact and to find the PSS value of your

application, you can run the below command:

abd shell dumpsys meminfo -s [process]

Here, your process name can be com.example.android.example .

So, when you run the above command then you will get something like below and the total

value here is the PSS value of your process.

13

The point that needs to be noted here is that there are various other factors that are

responsible for the performance of the app. They are:

1. The application use case

2. The platform configuration

3. The device memory pressure

 You shouldn’t only depend on the PSS value. But you should also care about the application

use-case. For example, in the following graph, there are various use-cases of the Gmail

application. You can see that you can’t compare the PSS value of point a with point b

because these points are in different use-case.

 Also, your device performance will be dependent on platform configuration i.e. the

premium device can perform more in comparison with the entry-level devices. Also, it

depends on the Android version. So, when you are testing an application, then you should

use a particular device and a particular Android version.

14

 Lastly, the impact of memory depends on memory pressure.

For example, in the below figure, we stared the chrome application and since there is no

memory pressure the PSS value is constant but eventually when the pressure on the device

increases that is more and more applications are in use, then kswapd comes into role and

some of the cached pages will be killed and there will be a decrease in the PSS value.

 So, it is advised to use some devices that are having enough memory (RAM) so that the

high-pressure memory doesn’t come into play.

NOTE: see video from 12:21 to 26:08 https://youtu.be/w7K0jio8afM?t=741

https://youtu.be/w7K0jio8afM?t=741

15

Reducing your application’s memory impact

The very first tip to reduce your application’s memory impact can be checking the Android

Studio’s memory profiler.

This will give you a ton of information i.e. you will come to know about your java object, where

are they allocated, what’s holding on to them and almost everything that you can find about

your Java object.

While finding the PSS value, we only considered the Java heap. But what about other factors

that are responsible for reducing your application’s memory impact.

16

These things depend on the Android platform. To get full information of the PSS value, you can

use -a in the dumpsys command:

dumpsys meminfo –a

dumpsys is a tool that runs on Android devices and provides information about system

services. Call dumpsys from the command line using the Android Debug Bridge (ADB) to get

diagnostic output for all system services running on a connected device.

This will give a much more detailed breakdown of the PSS value. It will also show you the

breakdown of different categories of memory like private, clean, share, dirty and so on.

If the above information is not useful then you can use showmap in your application and this

will give more breakdown of your memory mapping.

These platform commands can be used but the problem here is that:

1. These tools aren’t well supported

2. The user interface is clumsy

3. You need deep platform expertise

4. May need a rooted device

So, the idea here is that the information shown to you is not that useful or you need to be an

expert to understand those reports. So, this is not going to be a good tool.

What to do next? Is there any way?

Yes, if you want to improve your overall memory use then you can do two things:

1. Profile your Java heap: You can profile your Java heap with the help of Android Studio

Profiler. Since the allocations that are outside the Java heap are tied to Java allocation.

So, your application will be calling the Android framework, the Android framework is

calling into the native libraries and this is doing native allocations. The lifetime of these

will be tied to Java objects. So, just profile your Java heap.

2. Reduce your APK size: You can reduce the APK size of your application because there

are a lot of things that are present in APK and this, in turn, affects the runtime. So, try to

reduce the APK size of your application. To reduce the APK size, you can visit

the Android developer website

https://developer.android.com/studio/command-line/adb
https://developer.android.com/topic/performance/reduce-apk-size

17

Closing Notes

In this lecture,

- We understand Android Memory usage.

- We saw how the memory use can impact a device and at last, we saw how to reduce

your application’s memory impact.

- One thing that can be noted here is that you have to compromise between memory

usage and user satisfaction because if your application is using very low memory then

the features of the app will be less. Similarly, when the features are high then the

memory use is also high.

- Also, with due respect of time, the size of the app increases i.e. the app size in 2017 will

not be same in 2019. So, these things also come into play.

NOTE: see video from 26:10 to End https://youtu.be/w7K0jio8afM?t=1570

https://youtu.be/w7K0jio8afM?t=1570

