
1

ITSE301 Logic Programming

Built-in Predicates

14-5-2024

2

Built-in Predicates

var/1

nonvar/1

atom/1

atomic/1

number/1 Identifying terms

integer/1

float/1

compound/1

ground/1

=../2

functor/3 Decomposing structures

arg/3

findall/3

setof/3 Collecting all solutions

bagof/3

3

Identifying Terms

➢ These built-in predicates allow the type of terms to be tested.

var(X) succeeds if X is currently an uninstantiated variable.

nonvar(X) succeeds if X is not a variable, or already instantiated

atom(X) is true if X currently stands for an atom

number(X) is true if X currently stands for a number

integer(X) is true if X currently stands for an integer

float(X) is true if X currently stands for a real number.

atomic(X) is true if X currently stands for a number or an atom.

compound(X)is true if X currently stands for a structure.

ground(X) succeeds if X does not contain any uninstantiated

 variables.

4

var(X) is true if X is currently an
uninstantiated variable.

?- var(X).

true

?- X = 5, var(X).

false

?- var([X]).

true

var/1, nonvar/1, atom/1

5

nonvar(X)is true if X is not a variable, or
already instantiated.

| ?- nonvar(X).

no

?- X = 5,nonvar(X).

X = 5 ?

?-nonvar([X]).

true

var/1, nonvar/1, atom/1

6

atom(X) is true if X currently stands for an
atom: a non-variable term with 0 arguments,
and not a number

?- atom(paul).

true

?- X = paul,atom(X).

X = paul ?

?- atom([]).

?-atom([a,b]).

false

var/1, nonvar/1, atom/1

7

number(X) is true if X currently stands for any number

| ?- number(X). | ?- X=5,number(X). | ?- number(5.46).

no X = 5 ? yes

 yes

To identify what type of number it is use:

integer(X) is true if X currently stands for an integer (a

whole positive or negative number or zero).

float(X) is true if X currently stands for a real number.

| ?- integer(5). | ?- integer(5.46).

yes no

| ?- float(5). | ?- float(5.46).

no yes

number/1, integer/1, float/1

8

atomic/1, compound/1, ground/1
➢ If atom/1 is too specific then you can use atomic/1 which accepts

numbers and atoms.

 | ?- atom(5). | ?- atomic(5).

 no yes

➢ If atomic/1 fails then the term is either an uninstantiated variable

(which you can test with var/1) or a compound term:

 |?-compound([]). |?-compound([a]). |?-compound(b(a)).

 no yes yes

➢ ground(X) succeeds if X does not contain any uninstantiated

 variables. Also checks inside compound terms.

 |?-ground(X). |?-ground(a(b,X)).

 no no

 |?-ground(a). |?-ground([a,b,c]).

 yes yes

9

Decomposing Structures

➢ When using compound structures you can’t use a variable to

check or make a functor.

 |?- X=tree, Y = X(maple).

 Syntax error Y=X<<here>>(maple)

functor(T,F,N) is true if F is the principal functor of T and

 N is the arity of F.

arg(N,Term,A) is true if A is the Nth argument in Term.

|?-functor(t(f(X),a,T),Func,N). |?-arg(2,t(t(X),[]),A).

N = 3, Func = t ? A = [] ?

yes yes

| ?- functor(D,date,3), arg(1,D,11), arg(2,D,oct),

arg(3,D,2004).

D = date(11,oct,2004) ? yes

10

Decomposing Structures (2)

➢ We can also decompose a structure into a list of its

components using =../2.

 Term =.. L is true if L is a list that contains the principal

 functor of Term, followed by its arguments.

 | ?- f(a,b) =.. L. |?- T =.. [is_blue,sam,today].

 L = [f,a,b] ? T = is_blue(sam,today) ?

 yes yes

➢ By representing the components of a structure as a list they can be

recursively processed without knowing the functor name.

| ?- f(2,3)=..[F,N|Y], N1 is N*3, L=..[F,N1|Y].

L = f(6,3)?

yes

11

Collecting all solutions

➢ You've seen how to generate all of the solutions to a given goal,

at the prompt (;):

 | ?- member(X, [1,2,3,4]).

 X = 1 ? ;

 X = 2 ? ;

 X = 3 ? ;

 X = 4 ? ;

 no

➢ It would be nice if we could generate all of the solutions to some

goal within a program.

➢ There are three similar built-in predicates for doing this:

findall/3

setof/3

bagof/3

12

Meta-predicates

➢ findall/3, setof/3, and bagof/3 are all

 meta-predicates

❖they manipulate Prolog’s proof strategy.

findall(X,P,L)

setof(X,P,L) All produce a list L of all the objects X such

bagof(X,P,L) that goal P is satisfied (e.g. age(X,Age)).

➢ They all repeatedly call the goal P, instantiating the variable X within

P and adding it to the list L.

➢ They succeed when there are no more solutions.

➢ Exactly simulate the repeated use of ‘;’ at the SICStus prompt to find

all of the solutions.

13

findall/3

➢ findall/3 is the most straightforward of the three, and the

most commonly used:

 | ?- findall(X, member(X, [1,2,3,4]), Results).

 Results = [1,2,3,4]

 yes

➢ This reads: `find all of the Xs, such that X is a member of the list

[1,2,3,4] and put the list of results in Results'.

➢ Solutions are listed in the result in the same order in which

Prolog finds them.

➢ If there are duplicated solutions, all are included. If there are

infinitely-many solutions, it will never terminate!

14

findall/3 (2)

➢ We can use findall/3 in more sophisticated ways.

➢ The second argument, which is the goal, might be a

compound goal:

| ?- findall(X, (member(X, [1,2,3,4]), X > 2), Results).

 Results = [3,4]?

 yes

➢ The first argument can be a term of any complexity:

|?- findall(X/Y, (member(X,[1,2,3,4]), Y is X * X),

 Results).

 Results = [1/1, 2/4, 3/9, 4/16]?

 yes

	Slide 1: ITSE301 Logic Programming
	Slide 2: Built-in Predicates
	Slide 3: Identifying Terms
	Slide 4: var/1, nonvar/1, atom/1
	Slide 5: var/1, nonvar/1, atom/1
	Slide 6: var/1, nonvar/1, atom/1
	Slide 7
	Slide 8
	Slide 9: Decomposing Structures
	Slide 10: Decomposing Structures (2)
	Slide 11: Collecting all solutions
	Slide 12: Meta-predicates
	Slide 13: findall/3
	Slide 14: findall/3 (2)

