Android Concurrency & Synchronization

Introduction

SERVER

e Explore the motivations for & challenges of
concurrent software
» Concurrent software can simultaneously ‘%/

run multiple computations that I

potentially interact with each other.

Process A

[A (ol

e Understand the mechanisms that

Android provides to manage multiple —*5

threads that run concurrently within a . E

process

4

Some Android mechanisms are

based on standard Java threading

& locking mechanisms.

Other mechanisms are based on

Android concurrency idioms

Motivations for Concurrent Software

e Leverage hardware/software advances
» e.g., multi-core processors & multi-threaded operating systems,
virtual machines, & middleware
e Increase performance
» Parallelize computations & communications
e Improve response-time
» e.g., don’t starve the Ul -y
thread
e Simplify program structure

» e.g., by allow blocking

Message

operations

Message

Classic single
architectures can't
perform blocking
operations
This complicates app Message
implementations by Message
decoupling the flow of
control in time & s

pace Ul Thread __g
{rain thread)

Message

Message

Background
Thread & —

Handler

g:"'ﬂ Message

Handler

Message I Message
Modern multi-threaded
Message I

architectures support

blocking I/O in certain Message I

contexts Background

Message I Thread B —
Message I

Message \j

Ul Thread __-é
[miain thread)

Challenges for Concurrent Software

e Accidental Complexities
» Low-level APIs

— Tedious, error-prone, & non-portable
» Limited debugging tools

¢ Inherent Complexities
» Synchronization is the application of mechanisms to ensure that two

concurrently-executing threads do not execute specific portions of a
program at the same time

» Scheduling is the method by which threads, processes, or data flows
are given access to system resources

» A deadlock is a situation in which two or more competing actions

are each waiting for the other to finish, and thus neither ever does

Overview of Java Threads in Android
e Android implements many standard Java concurrency & synchronization
classes
e Conceptual view

» Concurrent computations running in a (Linux) process that can

communicate with each other via _

¢ |Implementation view
~ Each Java thread has a program counter & a stack (unique)
The heap & static areas are shared across threads (common)

ستاك و كاونتر خاص بيها

يتشاركو في البيانات بين الثريدز

اقراه من النظم

Motivating Android’s Concurrency Frameworks

¢ Android’s concurrency frameworks also address design constraints, e.g.

» “ANR” dialog is generated if the Ul thread blocks too long.
>

» Non Ul threads can’t access Ul toolkit components directly.

State Machine for Java Threads in Android

Blocked
new My Thread() resource

obtained attermnpt to access
guarded resource

_ cond.notify(),
my Thread.start() cond.notifyAllC)

run{) cond.wait()

run() method

relums

wiait{timeout)
join{timeout)

A thread state:

A thread can be in one of the following states:

NEW

A thread that has not yet started is in this state.

RUNNABLE

A thread executing in the Java virtual machine is in this state.

BLOCKED
A thread that is blocked waiting for a monitor lock is in this state.

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html#NEW
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html#RUNNABLE
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html#BLOCKED
النتوركول متجيش عل الواجهه خير ما يعلق

worker thread

الأدوالت متع الواجهه الأكتيفتي

« WAITING
A thread that is waiting indefinitely for another thread to perform a
particular action is in this state.
TIMED_WAITING
A thread that is waiting for another thread to perform an action forup to a
specified waiting time is in this state.

« TERMINATED
A thread that has exited is in this state.

A thread can be in only one state at a given point in time. These states are virtual
machine states which do not reflect any operating system thread states.

state machine Thread States {protocol})

/- Runnable thread was selected by \
thread scheduler to run/

t.start/ Ready O thread terminated/ .
| Terminated

Thread.yield/

thread was suspended
by thread scheduler/

l’\L'I'hre:ad.s.Ieep(s.leneptir'ne]nf { \ sleeptime elapsed/

\ o.wait(timeout)/ thread terminated/

l_ t.join(timeout)/
Timed Waiting | o_notifyAll

LockSupport.parkMNanos()/

o.notify/ \
rokSupport.parkUntil().f ™,
N\ o.wait / \ thread terminated

tjoin/ o.notifyAll/
l\ ! Waiting L

\ LockSupport.park/ o.notify/

wait for lock to enter
\fynchm block or method ™~ J

wait for lock to reenter Blocked monitor lock acquired/ / _
'\synchro block or method ———— thread terminated/

./

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html#WAITING
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html#TIMED_WAITING
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html#TERMINATED

Android's concurrency tools and mechanisms

1.

Threads

Java Threads: The basic unit of concurrency in Java. You can create a new
thread by extending the Thread class or implementing the Runnable
interface.

. AsyncTask

AsyncTask: Simplifies the use of threads and handlers. Designed to be a
quick and easy way to perform background operations and publish results
on the Ul thread.

Note: AsyncTask is deprecated in Android API level 30 and higher due to its
limitations and potential for misuse.

. Handlers and HandlerThread

e Handler: Allows you to send and process Message and Runnable objects
associated with a thread's MessageQueue.
e HandlerThread: A handy subclass of Thread that has its own Looper.

. Executors

Executor Framework: Provides a higher-level replacement for working
with threads directly. The Executors class provides factory methods for
creating different types of thread pools.

. Coroutines (Kotlin)

Coroutines: Provide a way to write asynchronous code in a sequential
manner. Kotlin coroutines are a powerful tool for managing concurrency.

Main Thread U Mathematical |
Intera Operations

Small Button ‘ ‘ Small Logical

Operations Click Operations

Main Thread

Your App
Background Thread 1

Coroutine 4
Network Image
Operation Loading

Summary

Concurrent software helps

» Leverage advances in hardware technology

» Meet the quality & performance needs of apps & services
Successful concurrent software solutions must address key accidental &
inherent complexities arising from

» Limitations with development tools/techniques

» Fundamental domain challenges
Some concurrency mechanisms provided by Android are based on standard
Java threading classes
Java Threads are implemented using various methods & functions defined
by lower layers of the Android software stack
A thread can be in only one state at a given point in time

Android's concurrency tools and mechanisms

