
Android Concurrency & Synchronization

Introduction

 Explore the motivations for & challenges of

concurrent software

 Concurrent software can simultaneously

run multiple computations that

potentially interact with each other.

 Understand the mechanisms that

Android provides to manage multiple

threads that run concurrently within a

process

 Some Android mechanisms are

based on standard Java threading

& locking mechanisms.

 Other mechanisms are based on

Android concurrency idioms

Motivations for Concurrent Software

 Leverage hardware/software advances

 e.g., multi-core processors & multi-threaded operating systems,

virtual machines, & middleware

 Increase performance

 Parallelize computations & communications

 Improve response-time

 e.g., don’t starve the UI

thread

 Simplify program structure

 e.g., by allow blocking

operations

Challenges for Concurrent Software

 Accidental Complexities

 Low-level APIs

 Tedious, error-prone, & non-portable

 Limited debugging tools

 Inherent Complexities

 Synchronization is the application of mechanisms to ensure that two

concurrently-executing threads do not execute specific portions of a

program at the same time

 Scheduling is the method by which threads, processes, or data flows

are given access to system resources

 A deadlock is a situation in which two or more competing actions

are each waiting for the other to finish, and thus neither ever does

Overview of Java Threads in Android

 Android implements many standard Java concurrency & synchronization

classes

 Conceptual view

 Concurrent computations running in a (Linux) process that can

communicate with each other via shared memory or message

passing

 Implementation view

 Each Java thread has a program counter & a stack (unique)

 The heap & static areas are shared across threads (common)

ستاك و كاونتر خاص بيها

يتشاركو في البيانات بين الثريدز

اقراه من النظم

Motivating Android’s Concurrency Frameworks

• Android’s concurrency frameworks also address design constraints, e.g.

 “ANR” dialog is generated if the UI thread blocks too long.

 Network calls are disallowed on the UI thread by default.

 Non UI threads can’t access UI toolkit components directly.

State Machine for Java Threads in Android

A thread state:

A thread can be in one of the following states:

 NEW

A thread that has not yet started is in this state.

 RUNNABLE

A thread executing in the Java virtual machine is in this state.

 BLOCKED

A thread that is blocked waiting for a monitor lock is in this state.

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html#NEW
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html#RUNNABLE
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html#BLOCKED
النتوركول متجيش عل الواجهه خير ما يعلق

worker thread

الأدوالت متع الواجهه الأكتيفتي

 WAITING

A thread that is waiting indefinitely for another thread to perform a

particular action is in this state.

 TIMED_WAITING

A thread that is waiting for another thread to perform an action for up to a

specified waiting time is in this state.

 TERMINATED

A thread that has exited is in this state.

A thread can be in only one state at a given point in time. These states are virtual
machine states which do not reflect any operating system thread states.

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html#WAITING
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html#TIMED_WAITING
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html#TERMINATED

Android's concurrency tools and mechanisms

1. Threads

Java Threads: The basic unit of concurrency in Java. You can create a new

thread by extending the Thread class or implementing the Runnable

interface.

2. AsyncTask

AsyncTask: Simplifies the use of threads and handlers. Designed to be a

quick and easy way to perform background operations and publish results

on the UI thread.

Note: AsyncTask is deprecated in Android API level 30 and higher due to its

limitations and potential for misuse.

3. Handlers and HandlerThread

• Handler: Allows you to send and process Message and Runnable objects

associated with a thread's MessageQueue.

• HandlerThread: A handy subclass of Thread that has its own Looper.

4. Executors

Executor Framework: Provides a higher-level replacement for working

with threads directly. The Executors class provides factory methods for

creating different types of thread pools.

5. Coroutines (Kotlin)

Coroutines: Provide a way to write asynchronous code in a sequential

manner. Kotlin coroutines are a powerful tool for managing concurrency.

Summary

 Concurrent software helps

 Leverage advances in hardware technology

 Meet the quality & performance needs of apps & services

 Successful concurrent software solutions must address key accidental &

inherent complexities arising from

 Limitations with development tools/techniques

 Fundamental domain challenges

 Some concurrency mechanisms provided by Android are based on standard

Java threading classes

 Java Threads are implemented using various methods & functions defined

by lower layers of the Android software stack

 A thread can be in only one state at a given point in time

 Android's concurrency tools and mechanisms

