
Android Concurrency & Synchronization

Introduction

 Explore the motivations for & challenges of

concurrent software

 Concurrent software can simultaneously

run multiple computations that

potentially interact with each other.

 Understand the mechanisms that

Android provides to manage multiple

threads that run concurrently within a

process

 Some Android mechanisms are

based on standard Java threading

& locking mechanisms.

 Other mechanisms are based on

Android concurrency idioms

Motivations for Concurrent Software

 Leverage hardware/software advances

 e.g., multi-core processors & multi-threaded operating systems,

virtual machines, & middleware

 Increase performance

 Parallelize computations & communications

 Improve response-time

 e.g., don’t starve the UI

thread

 Simplify program structure

 e.g., by allow blocking

operations

Challenges for Concurrent Software

 Accidental Complexities

 Low-level APIs

 Tedious, error-prone, & non-portable

 Limited debugging tools

 Inherent Complexities

 Synchronization is the application of mechanisms to ensure that two

concurrently-executing threads do not execute specific portions of a

program at the same time

 Scheduling is the method by which threads, processes, or data flows

are given access to system resources

 A deadlock is a situation in which two or more competing actions

are each waiting for the other to finish, and thus neither ever does

Overview of Java Threads in Android

 Android implements many standard Java concurrency & synchronization

classes

 Conceptual view

 Concurrent computations running in a (Linux) process that can

communicate with each other via shared memory or message

passing

 Implementation view

 Each Java thread has a program counter & a stack (unique)

 The heap & static areas are shared across threads (common)

ستاك و كاونتر خاص بيها

يتشاركو في البيانات بين الثريدز

اقراه من النظم

Motivating Android’s Concurrency Frameworks

• Android’s concurrency frameworks also address design constraints, e.g.

 “ANR” dialog is generated if the UI thread blocks too long.

 Network calls are disallowed on the UI thread by default.

 Non UI threads can’t access UI toolkit components directly.

State Machine for Java Threads in Android

A thread state:

A thread can be in one of the following states:

 NEW

A thread that has not yet started is in this state.

 RUNNABLE

A thread executing in the Java virtual machine is in this state.

 BLOCKED

A thread that is blocked waiting for a monitor lock is in this state.

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html#NEW
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html#RUNNABLE
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html#BLOCKED
النتوركول متجيش عل الواجهه خير ما يعلق

worker thread

الأدوالت متع الواجهه الأكتيفتي

 WAITING

A thread that is waiting indefinitely for another thread to perform a

particular action is in this state.

 TIMED_WAITING

A thread that is waiting for another thread to perform an action for up to a

specified waiting time is in this state.

 TERMINATED

A thread that has exited is in this state.

A thread can be in only one state at a given point in time. These states are virtual
machine states which do not reflect any operating system thread states.

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html#WAITING
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html#TIMED_WAITING
https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html#TERMINATED

Android's concurrency tools and mechanisms

1. Threads

Java Threads: The basic unit of concurrency in Java. You can create a new

thread by extending the Thread class or implementing the Runnable

interface.

2. AsyncTask

AsyncTask: Simplifies the use of threads and handlers. Designed to be a

quick and easy way to perform background operations and publish results

on the UI thread.

Note: AsyncTask is deprecated in Android API level 30 and higher due to its

limitations and potential for misuse.

3. Handlers and HandlerThread

• Handler: Allows you to send and process Message and Runnable objects

associated with a thread's MessageQueue.

• HandlerThread: A handy subclass of Thread that has its own Looper.

4. Executors

Executor Framework: Provides a higher-level replacement for working

with threads directly. The Executors class provides factory methods for

creating different types of thread pools.

5. Coroutines (Kotlin)

Coroutines: Provide a way to write asynchronous code in a sequential

manner. Kotlin coroutines are a powerful tool for managing concurrency.

Summary

 Concurrent software helps

 Leverage advances in hardware technology

 Meet the quality & performance needs of apps & services

 Successful concurrent software solutions must address key accidental &

inherent complexities arising from

 Limitations with development tools/techniques

 Fundamental domain challenges

 Some concurrency mechanisms provided by Android are based on standard

Java threading classes

 Java Threads are implemented using various methods & functions defined

by lower layers of the Android software stack

 A thread can be in only one state at a given point in time

 Android's concurrency tools and mechanisms

