CS2063 Intro. Mobile
Application Development

Background Tasks in Android
Thread

Background Tasks in Android | ::

The Android Platform supports Background Processingin 4 different
ways:

e Threads: Android supports the usage of the Threads class to perform
asynchronous processing.

e Handler: The Handler class can update the user interface. A Handler
provides methods for receiving instances of the Message or Runnable class.

e AsyncTask: Is a special class for Android development that encapsulate
background processing and facilitates the communication and updating of
the application’s UI.

e Service: is a component that runs in the background to perform long-
running operations without needing to interact with the user and it works
even if application is destroyed.

An Overview of Threads

In Java .

A thread is a concurrent unit of execution.

e Threads share process’s resource but are able to execute
independently.

e Eachthread has a call stack for methods being invoked.

e A VM may run several threads in parallel.

e True parallelism for multi-core CPU.

e A VM has at least the main thread running when it is started.

a.out

T1 T2
.

Threads Model

T3
T4

w1}

An Overview of Threads
In Java (Cont.)

e Multithreaded programming challenges include:
e Dividing work load.
e Overriding data.
o Datadependency.
o Deadlock.

e Testing and debugging.

An Overview of Threads
In Java (Cont.)

Why to use threads?

e Multi-thread programming is hard, so why to use it?

If the execution time of the main thread is higher than 5 s, then the

OS displays an error message (ANR).

e Slow tasks (like file downloading), cannot run in the main thread; so,

In this case you must use multiple threads.

e In a multi-core CPU, multiple threads can truly run in parallel.

How to use multi-tread?

e classical Thread programming.

e However, special care must be taken as only main thread can

update the UL.

Thread eoce

public class Thread

extends Object implements Runnable

java.lang.Object
L java.lang.Thread

Known direct subclasses
ForkJoinWorkerThread, HandlerThread

The Thread class defines several methods that help manage threads.

Method Meaning
getName() Obtain thread’s name.
getPriority() Obtain thread’s priority.
isAlive() Determine if a thread is still running.
join() Wait for a thread to terminate.
run() Entry point for the thread.

sleep() Suspend a thread for a period of time.

Life Cycle of a Thread

waiting

® = new

program starts
thread

runnable
— % —
52| |5
~ s =

timed waiting

expires

terminated

How to create a thread ot

e Creatinga Thread:

e You canimplementthe Runnable interface.

Runnable myRunnable1 = new MyRunnableClass();
Thread t1 = new Thread(myRunnable1);
t1.start();

e You can extendthe Thread class.

Create a new class that extends Thread and override its run() method.
MyThread t = new MyThread();
t.start();

e In both cases, the start() method must be called to actually execute

the new Thread.

import java.util.Arrays; _ Y
import java.util.Collections; Max and min numbers? ceo
import java.io.”;
public class MinMax extends Thread {
static Integer[]numbers={8, 2,7, 1,4, 9, 5};
inti;
MinMax(int i) {
this.i=1;
this.start();
}
public void run() {
if(i==0) {
int min = (int) Collections.min(Arrays.asList(numbers));
System.out.printin("Min number: " + min);

}

else {
int max = (int) Collections.max(Arrays.asList(numbers));
System.out.printin("Max number: " + max);

}/run
public static void main(String args[])
{
MinMax min = new MinMax(0);
MinMax max = new MinMax(1);
try {
min.join();
max.join();
} catch(Exception e){ }
System.out.printin("done :");
} // end main()
} // end class

class PrintJava

{ public static void main(String argsf])
{
Q g = new Q();
new Producer(q);
new Consumer(q);
} System.out.printin("Press Control-Cto stop.");

class Producer implements Runnable

{

Qq;

Producer(Q q)

{
this.qg = q;
new Thread(this, "Producer™).start();

¥

public void run()

{
inti =0;
while(true)
{
g.put(i++);
¥

¥

class Consumer implements Runnable

{
Qaq;
Consumer(Qq)
{
this.g = q;
new Thread(this, "Consumer").start();
}
public void run()
{
while(true)
{
q.get();
}
}

class Q -4
{ [
int n;
boolean valueSet = false;
synchronized int get()
{
if('valueSet)
try
{
wait();
}
catch(InterruptedException e)
{
System.out.printin(" InterruptedException caught");
)

System.out.printin("Got: " + n);
valueSet = false;

notify();

return n;

synchronized void put(int n)

{

if(valueSet)
try
{
wait();
)
catch(InterruptedException e)
{
System.out.printin("InterruptedException caught");
)
this.n = n;

valueSet = true;
System.out.printin("Put: " + n);
notify();

Example-1: define a class to be | 33

a subclass of Thread. s

class PrimeThread extends Thread {
long minPrime;
PrimeThread(long minPrime) {
this.minPrime = minPrime;

}

public void run() {
/[compute primes larger than minPrime

}

e Thefollowing code would then create a thread and start it running:

PrimeThread p = new PrimeThread(143);
p.start();

Example-2: define a class that | &

implements the Runnable interface:

class PrimeRunimplements Runnable {
long minPrime;
PrimeRun(long minPrime) {
this.minPrime = minPrime;

}

public void run() {
/[compute primes larger than minPrime

}

e The following code would then create a thread and start it running:

PrimeRun p = new PrimeRun(143);
new Thread(p).start();

Example-3 : A Basic Threading

in Android

e The first step will be to highlight
the risks involved in not
performing time-consuming
tasks in a separate thread from

the main thread.

® ThreadExample

Press Me

http://www.techotopia.com/index.php/File:Android_thread_example_iu2.png

Example -1: without Threads :

public void buttonClick(View view)

{
long endTime = System.currentTimeMillis() + 20*1000;

while (System.currentTimeMillis() < endTime){
synchronized (this) {
try {
wait(endTime - System.currentTimeMillis());
} catch (Exceptione){ }

}

}
TextView myTextView = (TextView)findViewByld(R.id.myTextView),

myTextView.setText("Button Pressed"),

To avoid ANR

A Sorry

Application "ThreadExample" is not responding.

Force close

Walt

http://www.techotopia.com/index.php/File:Android_kindle_fire_application_not_responding2.png

Example -2: Using Threads

public void buttonClick(View view)

{

Runnable runnable = new Runnable() {
public void run() {

long endTime = System.current TimeMillis() + 20*1000;

while (System.currentTimeMillis() < endTime) {

synchronized (this) {
try {

wait(endTime - System.currentTimeMillis());

} catch (Exception e) { }

}
}
}
3
Thread mythread = new Thread(runnable);
mythread.start();

}

Reference

e Background tasks in Android
e ThreadsinJava

e Android- Threads

