
CS2063 Intro. Mobile

Application Development

Background Tasks in Android

Thread

Background Tasks in Android

The Android Platform supports Background Processing in 4 different

ways:

 Threads: Android supports the usage of the Threads class to perform

asynchronous processing.

 Handler: The Handler class can update the user interface. A Handler

provides methods for receiving instances of the Message or Runnable class.

 AsyncTask: Is a special class for Android development that encapsulate

background processing and facilitates the communication and updating of

the application’s UI.

 Service: is a component that runs in the background to perform long-

running operations without needing to interact with the user and it works

even if application is destroyed.

An Overview of Threads
In Java

A thread is a concurrent unit of execution.

 Threads share process’s resource but are able to execute

independently.

 Each thread has a call stack for methods being invoked.

 A VM may run several threads in parallel.

 True parallelism for multi-core CPU.

 A VM has at least the main thread running when it is started.

Threads Model

An Overview of Threads
In Java (Cont.)

 Multithreaded programming challenges include:

 Dividing work load.

 Overriding data.

 Data dependency.

 Deadlock.

 Testing and debugging.

An Overview of Threads
In Java (Cont.)
Why to use threads?

 Multi-thread programming is hard, so why to use it?

 If the execution time of the main thread is higher than 5 s, then the

OS displays an error message (ANR).

 Slow tasks (like file downloading), cannot run in the main thread; so,

in this case you must use multiple threads.

 In a multi-core CPU, multiple threads can truly run in parallel.

How to use multi-tread?

 classical Thread programming.

 However, special care must be taken as only main thread can

update the UI.

Thread

The Thread class defines several methods that help manage threads.
 Method Meaning

 getName() Obtain thread’s name.

getPriority() Obtain thread’s priority.

isAlive() Determine if a thread is still running.

join() Wait for a thread to terminate.
run() Entry point for the thread.

sleep() Suspend a thread for a period of time.

Life Cycle of a Thread

How to create a thread
 Creating a Thread:

 You can implement the Runnable interface.

 Runnable myRunnable1 = new MyRunnableClass();

 Thread t1 = new Thread(myRunnable1);

 t1.start();

 You can extend the Thread class.

 Create a new class that extends Thread and override its run() method.

 MyThread t = new MyThread();

 t.start();

 In both cases, the start() method must be called to actually execute

the new Thread.

import java.util.Arrays;

import java.util.Collections;

import java.io.*;

public class MinMax extends Thread {

 static Integer[] numbers = { 8, 2, 7, 1, 4, 9, 5};

 int i;

 MinMax(int i) {

 this.i = i;

 this.start();

 }

 public void run() {

 if(i==0) {

 int min = (int) Collections.min(Arrays.asList(numbers));

 System.out.println("Min number: " + min);

 }

 else {

 int max = (int) Collections.max(Arrays.asList(numbers));

 System.out.println("Max number: " + max);

 }

Max and min numbers?

 } // run

 public static void main(String args[])

 {

 MinMax min = new MinMax(0);

 MinMax max = new MinMax(1);

 try {

 min.join();

 max.join();

 } catch(Exception e){ }

 System.out.println("done :");

 } // end main()

} // end class

class PrintJava
 {

 public static void main(String args[])
 {

 Q q = new Q();

new Producer(q);

 Consumer(q); new

 System.out.println("Press Control-C to stop.");

 }
 }

class Producer implements Runnable
{
 Q q;
 Producer(Q q)
 {
 this.q = q;
 new Thread(this, "Producer").start();
 }

 public void run()
 {
 int i = 0;
 while(true)
 {
 q.put(i++);
 }
 }
}

class Consumer implements Runnable
{
 Q q;

 Consumer(Q q)
 {
 this.q = q;
 new Thread(this, "Consumer").start();
 }

 public void run()
 {
 while(true)
 {
 q.get();
 }
 }
}

class Q
{
 int n;
 boolean valueSet = false;

 synchronized int get()
 {
 if(!valueSet)
 try
 {
 wait();
 }
 catch(InterruptedException e)
 {
 System.out.println(" InterruptedException caught");
 }
 System.out.println("Got: " + n);
 valueSet = false;
 notify();
 return n;
 }

 synchronized void put(int n)
 {

 if(valueSet)
 try
 {
 wait();
 }
 catch(InterruptedException e)
 {
 System.out.println("InterruptedException caught");
 }
 this.n = n;
 valueSet = true;
 System.out.println("Put: " + n);
 notify();
 }
}

Example-1: define a class to be

a subclass of Thread.
class PrimeThread extends Thread {

 long minPrime;

 PrimeThread(long minPrime) {

 this.minPrime = minPrime;

 }

 public void run() {

 // compute primes larger than minPrime

 . . .

 }

}

 The following code would then create a thread and start it running:

 PrimeThread p = new PrimeThread(143);

 p.start();

Example-2: define a class that

implements the Runnable interface.
class PrimeRun implements Runnable {

 long minPrime;

 PrimeRun(long minPrime) {

 this.minPrime = minPrime;

 }

 public void run() {

 // compute primes larger than minPrime

 . . .

 }

}

 The following code would then create a thread and start it running:

 PrimeRun p = new PrimeRun(143);

 new Thread(p).start();

Example-3 : A Basic Threading

in Android

 The first step will be to highlight

 the risks involved in not

 performing time-consuming

 tasks in a separate thread from

 the main thread.

http://www.techotopia.com/index.php/File:Android_thread_example_iu2.png

Example -1: without Threads
…

public void buttonClick(View view)

 {

 long endTime = System.currentTimeMillis() + 20*1000;

 while (System.currentTimeMillis() < endTime) {

 synchronized (this) {

 try {

 wait(endTime - System.currentTimeMillis());

 } catch (Exception e) { }

 }

 }

 TextView myTextView = (TextView)findViewById(R.id.myTextView);

 myTextView.setText("Button Pressed");

 }

…

To avoid ANR

http://www.techotopia.com/index.php/File:Android_kindle_fire_application_not_responding2.png

Example -2: Using Threads
…

public void buttonClick(View view)

 {

 Runnable runnable = new Runnable() {

 public void run() {

 long endTime = System.currentTimeMillis() + 20*1000;

 while (System.currentTimeMillis() < endTime) {

 synchronized (this) {

 try {

 wait(endTime - System.currentTimeMillis());

 } catch (Exception e) { }

 }

 }

 }

 };

 Thread mythread = new Thread(runnable);

 mythread.start();

 }

Reference
 Background tasks in Android

 Threads in Java

 Android – Threads

