
Android OS - Processes Scheduling

Android Process Scheduling

Process scheduling in Android, similar to other multitasking operating systems, is

the method by which the system allocates CPU time to various running

applications (processes).

KEY aspects:

 Preemptive Scheduling:

 Android utilizes a preemptive scheduling algorithm,

 inheriting this from the Linux kernel at its core.

 interrupt a running process with a lower priority if a higher priority

process enters the "ready" state.

 Priority Based: Android uses a priority-based scheme to determine which

process gets CPU time. There are generally two categories:

 Foreground processes

 Background processes

 Linux Kernel Scheduling: Android leverages the scheduling mechanisms of

the Linux kernel, specifically the Completely Fair Scheduler (CFS).

CPU Scheduling: Dispatcher.

 The Dispatcher is the element that contains the CPU scheduling function.

 Dispatcher module is used in CPU scheduling, which provides control to

the CPU in the selection of processes using the short-term scheduler.

 Dispatcher involves: Context switching; Switching to user mode.

CPU Scheduling: is a process of determining which process will own CPU for

execution while another process is on hold.

 The main task of CPU scheduling is to make sure that whenever the CPU

remains idle, the OS at least select one of the processes available in the

ready queue for execution.

Presented Scheduling Algorithms

For batch systems

 First-Come First-Served (FCFS)

 Shortest Job First (SJF)

 Shortest Remaining Time (SRT)

For interactive systems

 Round-Robin scheduling (RR)

 Priority-based scheduling (PBS)

 Group-based scheduling (GBS)

 Fair-share scheduling (FSS)

 Lottery scheduling (LS)

10/31

Scheduling classes

 Real-time processes: SCHED_FIFO, SCHED_RR

 Interactive and batch processes: SCHED_OTHER, SCHED_BATCH

 Low-priority processes: SCHED_IDLE

One active queue for each of the 140 priorities and for each processor.

Android CPU scheduling

 Roughly, the scheduler is based on the Linux one

• Fair scheduling approach

 BUT: fairness according to Groups of processes

• Foreground/Active, visible, service, background, empty

 To reclaim resources, Android may kill processes according to their running

priority.

Completely Fair Scheduler

Completely fair Scheduler (CFS):

 It is based on Rotating Staircase Deadline Scheduler (RSDL).

 It is default scheduling process since version 2.6.23.

 Elegant handling of I/O and CPU bound process.

CFS implements three scheduling policies:

1. SCHED_NORMAL (traditionally called SCHED_OTHER): The scheduling policy

that is used for regular tasks.

2. SCHED_BATCH: Does not preempt nearly as often as regular tasks would,

thereby allowing tasks to run longer and make better use of caches but at

the cost of interactivity. This is well suited for batch jobs.

3. SCHED_IDLE: It is also derived from SCHED_OTHER, but it has nice values

weaker than 19.

SCHED_FIFO/_RR are implemented in sched/rt.c and are as specified by

POSIX.

Completely Fair Scheduling (CFS) — CPU Scheduler Algorithm

 Both interactive and non-interactive processes can fit into this easily

 Each process receives equally fair CPU time for execution. Idea: If N

processes are in the system, each process should have for (100N) % of the

CPU time.

How CFS algorithm is incorporated in CPU scheduler?

 Each process PCB (process control block) has an entry for ‘virtual runtime

(vruntime)’.

 At every scheduling point, if the process has run for t ms, then

its vruntime is incremented by t. So vruntime monotonically increases. i.e

vruntime += t

 Whenever timer interrupt or context-switch happens, it always chooses

the next task with the lowest vruntime (min_vruntime).

 min_vruntime is a pointer which points to the lowest vruntime.

 Time slice will be dynamically recomputed; Process executes the task ;

context-switch again occurs and cycle continues.

How the internal mechanism of CFS picking the next task to run works?

 CFS uses Red-Black tree data structure (self-balancing binary search tree) ;

inserting/deleting tasks from the tree is O(logN)

 Each node represents a runnable task

 Nodes are ordered according to vruntime;

 Nodes in left-side have lower vruntime compared to the nodes on the

right-side of the tree;

 At the point of context-switch:

 It picks the left most node of the tree in O(1) as its cached

in min_vruntime

 If the previous process is still runnable, it is re-inserted into the tree

with re-computed vruntime in O(logN);

 Tasks move from left to right side of the tree after its execution

completes and hence “Starvation” has been avoided.

Starvation — > When high priority processes keep executing and low priority

processes get blocked for indefinite time

CFS does NOT use any priority-based queues and priority is used to just weigh

the vruntime (i,e nice values).

How I/O and CPU bound processes are handled by CFS?

 I/O bound processes should get higher priority and get a longer time to

execute compared to CPU bound processes.

Because

 I/O processes have low CPU burst time , so they will have lower vruntime.

They mainly would appear on the left-side of the RBtree and so ending up

with higher priorities!

What happens when a new process is created?

 It gets added to RB-tree

 Starts with initial value of min_vruntime and that ensures that it gets to

execute quickly as possible[Remember, lower vruntime tasks end up in

left-side!]

EX-(CFS algorithm): Let’s take four process and their burst time as shown below

waiting in the ready queue for the execution:

Process Burst Time (in ms)

A 10 ms

B 6 ms

C 14 ms

D 6 ms

CFS Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

A 1 2 3 4 5 6 8 10

B 1 2 3 4 5 6

C 1 2 3 4 5 6 8 10 14

D 1 2 3 4 5 6

Execution = (Time quantum/N).

 So 4/4=1 each process gets 1ms to execute in first quantum.

 After the completion of six quantum process B and D are completely

executed.

 Remaining are A and C, which are already executed for 6ms and their

remaining time is A=4ms and C=8ms).

 In the seventh quantum (Q7) of time A and C will execute (4/2=2ms as

there are only two process remaining).

