
ARM Processors
ITMC301

ARM Microarchitecture - L3
Fall 2023

Dr. Abdussalam Baryun

2

ARM Computing Architecture

• Memory-mapped I/O:
- No specific instructions for I/O (use Load/Store instr. instead)
- Peripheral’s registers at some memory addresses

• Von Neumann architecture (old version used for ARM)
– Single memory contains both the program code and the data.

• Harvard Architecture (most used for ARM)
– Two separate memories. One contains only data while the

other is containing only program code.

HarvardVon Neumannd

SoC

ARM Core/Implementation

ARM Specifications

• ARM family or architecture or core?

ARM v7 (not ARM7)

• V7 Architecture
Profiles:

Cortext-A
Cortext-R
Cortext-M

ARM architecture Profile

• Arm Cortex is the brand name used for Arm’s
processor IP offerings. Our partners offer
other processor brands using the Arm
architecture.

ARM Architecture Specifies

Microarchitecture

- Architecture does not tell you how a processor is
built and works. The build and design of a processor
is referred to as micro-architecture. Micro-
architecture tells you how a processor works.
- Micro-architecture includes things like:
• Pipeline length and layout.
• Number and sizes of caches.
• Cycle counts for individual instructions.
• Which optional features are implemented.

• For example, Cortex-A53 and Cortex-A72 are
both implementations of the Armv8-A
architecture. This means that they have the
same architecture, but they have very
different micro-architectures.

• Software that is architecturally-compliant can
run on either the Cortex-A53 or Cortex-A72
without modification, because they both
implement the same architecture.

• the development of the Arm architecture from
version 5 to version 8, with the new features
that were added each time.

Simple Processor (RISC)

By: Dr. Abdussalam Baryun

Operation Code (opcode)

opcode destination source1 source2

Three address instruction format

ADD X3, X1, X2 X3 = X1+X2

By: Dr. Abdussalam Baryun

bits Total inst. bits

Effect

MU0 of Simple opcode of 4 bits

MU0 instruction format

By: Dr. Abdussalam Baryun

Simple Instruction Set

By: Dr. Abdussalam Baryun

Datapath design

• Each instruction takes exactly the number of clock
cycles defined by the number of memory accesses it
must make.

• Referring back to Table 1.1 we can see that the first
four instructions each require two memory accesses
(one to fetch the instruction itself and one to fetch or
store the operand) whereas the last four instructions
can execute in one cycle since they do not require an
operand. (In practice we would probably not worry
about the efficiency of the STP instruction since it halts
the processor for ever.)

By: Dr. Abdussalam Baryun

MU0 data path

By: Dr. Abdussalam Baryun

Data path operation

• The design we will develop assumes that each
instruction starts when it has arrived in the
instruction register.

• Until it is in the instruction register, MU0 cannot
know which instruction it is dealing with.

• The processor must start in a known state.
Usually this requires a reset input to cause it to
start executing instructions from a known
address.

By: Dr. Abdussalam Baryun

an instruction executes in two stages, possibly omitting the
first of these:

1. Access the memory operand and perform the desired
operation. The address in the instruction register is issued
and either an operand is read from memory, combined
with the accumulator in the ALU and written back into the
accumulator, or the accumulator is stored out to memory.

2. Fetch the next instruction to be executed. Either the PC or
the address in the instruction register is issued to fetch the
next instruction, and in either case the address is
incremented in the ALU and the incremented value saved
into the PC.

By: Dr. Abdussalam Baryun

Control Logic design

• The control logic simply has to decode the current
instruction and generate the appropriate levels on the
datapath control signals, using the control inputs from
the datapath where necessary.

• Although the control logic is a finite state machine, and
therefore in principle the design should start from a
state transition diagram, in this case the FSM is trivial
and the diagram not worth drawing.

• The implementation requires only two states, 'fetch'
and 'execute', and one bit of state (Ex/ft) is therefore
sufficient.

By: Dr. Abdussalam Baryun

By: Dr. Abdussalam Baryun

By: Dr. Abdussalam Baryun

• The control logic can be presented in tabular
form as shown in Table 1.2.

• Once the ALU function select codes have been
assigned the table may be implemented
directly as a PLA (programmable logic array) or
translated into combinatorial logic and
implemented using standard gates.

By: Dr. Abdussalam Baryun

By: Dr. Abdussalam Baryun

By: Dr. Abdussalam Baryun

By: Dr. Abdussalam Baryun

Instruction Sets for efficient
implementations

• The art of processor design is to define an instruction
set that supports the functions that are useful to the
programmer whilst allowing an implementation that is
as efficient as possible.

• The semantic gap between a high-level language
construct and a machine instruction is bridged by a
compiler, which is a (usually complex) computer
program that translates a high-level language program
into a sequence of machine instructions.

• Instruction sets continue to evolve to give better
support for efficient implementations and for new
applications such as multimedia.

By: Dr. Abdussalam Baryun

Three Instruction Sets

Microprocessor Instruction States
• ARM Instruction within active ARM state:

– Load-Store architecture
– 32-bit wide and 3-address instruction format
– Original RISC processor (lots of parallelism)

• Thumb Instruction within active Thumb state:
– Subset of ARM instruction with some

restrictions
– 16-bit wide
– Less parallelism

• Jazelle Instruction within active Jazelle state:
– To speed up Java byte code
– 8-bit wide

Current Program Status Register
(CPSR)

• The ARM core uses the cpsr register to monitor and control internal
operations and instruction set state activation.

• The cpsr is a dedicated 32-bit register and resides in the register file.
• Figure 2.3 shows the basic layout of a generic program status

register. Note that the shaded parts are reserved for future
• expansion.
• The cpsr is divided into four fields, each 8 bits wide: flags, status,

extension, and control.
• In current designs the extension and status fields are reserved for

future use.
• The control field contains the processor mode, state, and interrupt

mask bits.
• The flags field contains the condition flags.

Generic Program Status Register
(GPSR)

• The current processor mode is stored in the cpsr. It holds the current status of the
processor core as well interrupt masks, condition flags, and state. The state
determines which instruction set is being executed.

States by CPSR register’s T bit

Some notes

• Note when the processor is in Thumb state the pc
is the instruction address plus 4.

• You cannot intermingle sequential ARM, Thumb,
and Jazelle instructions.

• To execute Java bytecodes, you require the Jazelle
technology plus a specially modified version of
the Java virtual machine.

• It is important to note that the hardware portion
of Jazelle only supports a subset of the Java
bytecodes; the rest are emulated in software.

Some notes

• One of the most significant changes to the ISA was the
introduction of the Thumb instruction set inARMv4T
(the ARM7TDMI processor).

• Since Thumb has higher performance than ARM on a
processor with a 16-bit data bus, but lower
performance than ARM on a 32-bit data bus, use
Thumb for memory-constrained systems.

• There are no Thumb instructions to access the
coprocessors, and cpsr register.

• Thumb has higher/better code density—the space
taken up in memory by an executable program—than
ARM (see fig 4.1).

Code Density

References

• A., Sloss, et al., ARM System Developer’s
Guide.

• Introducing the ARM architecture, ARM
document, 2019, sited at www.arm.com.

