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ARM Computing Architecture

* Von Neumann architecture (old version used for ARM)
— Single memory contains both the program code and the data.
» Harvard Architecture (most used for ARM)
— Two separate memories. One contains only data while the
other is containing only program code.

Von Neumannd Harvard

- Address /Control

Data/Instructions
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* Memory-mapped I/0O:
- No specific instructions for I/O (use Load/Store instr. instead)
- Peripheral’s registers at some memory addresses
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Pigu re 1.2 An example of an ARM-based embedded device, a microcontroller.
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ARM Core/Implementation
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Figure 2.1 ARM core dataflow model.
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ARM Specifications

 ARM family or architecture or core?

Family Architecture Cores
ARM7TDMI ARMvAT ARM7TDMI(S)
ARM9 ARM9E ARMV5TE(J) ARMO926EJ-S. ARMO66E-S
ARM11 ARMV6 (T2) ARM1136(F), 1156 T2(F)-S,
1176JZ(F), ARM11 MPCore™
profila: ARMV7-A Cortex-A5. A7.A8.A9. A15
Cortex-A ARMv7-R Cortex-R4(F)
Cortex-R ARMV7-M Cortex-M3, M4
Cortex-M ARMvV6-M Cortex-M1, MO
NEW ! ARMVS-A 64 Bit
NEW ! ARMvO9-A 64 Bit
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ARM v7 (not ARM7)
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ARM architecture Profile

 Arm Cortex is the brand name used for Arm’s
processor |P offerings. Our partners offer
other processor brands using the Arm
architecture.

There are three architecture profiles: A, R and M.

A-profile (Applications) R-profile (Real-time) M-profile (Microcontroller)
* High performance * Targeted at systems with o Smallest/lowest power.
real-time reguirements. Small, highly power-

efficient devices.

* Designed torun a ¢« Commonly found in *  Found at the heart of many
complex operating networking equipment, and loT devices.
system, such as Linux embedded control systems.

or Windows.
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ARM Architecture Specifies

Instruction set ¢ The function of each instruction

* How that instruction is represented in memory (its encoding).

Register set * How many registers there are.
* The size of the registers.
* The function of the registers.

¢  Their initial state.

Exception model *  The different levels of privilege.
* The types of exceptions.

*  What happens on taking or returning from an exception.

Memory model * How memory accesses are ordered.

*» How the caches behave, when and how software must
perform explicit maintenance.

Debug, trace, and * How breakpoints are set and triggered.

profiling *  What information can be captured by trace tools and in what

format.
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Microarchitecture

- Architecture does not tell you how a processor is
built and works. The build and design of a processor
is referred to as micro-architecture. Micro-
architecture tells you how a processor works.

- Micro-architecture includes things like:

e Pipeline length and layout.

e Number and sizes of caches.

e Cycle counts for individual instructions.

e Which optional features are implemented.
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* For example, Cortex-A53 and Cortex-A72 are
both implementations of the Armv8-A
architecture. This means that they have the
same architecture, but they have very
different micro-architectures.

* Software that is architecturally-compliant can
run on either the Cortex-A53 or Cortex-A72
without modification, because they both
implement the same architecture.
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* the development of the Arm architecture from
version 5 to version 8, with the new features
that were added each time.
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Simple Processor (RISC)

MUO - a simple processor

A simple form of processor can be built from a few basic components:

* aprogram counter (PC) register that is used to hold the address of the current
instruction:

*+ asingle register called an accumulator (ACC) that holds a data value while it is
worked upon:

* an arithmetic-logic unit (ALTU) that can perform a number of operations on
binary operands. such as add. subtract. increment. and so on:

* an instruction register (IR) that holds the current instruction while it 1s executed:

* instruction decode and control logic that employs the above components to
achieve the desired results from each mstruction.

By: Dr. Abdussalam Baryun
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Operation Code (opcode)

opcode destination sourcel source2

bits Total inst. bits

Three address instruction format

Effect

ADD X3, X1, X2 =) X3 = X1+X2

By: Dr. Abdussalam Baryun
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MUO of Simple opcode of 4 bits

The MUO MUO is a 16-bit machine with a 12-bit address space. so it can address up to 8
instruction set Kbytes of memory arranged as 4.096 mdividually addressable 16-bit locations.
Instructions are 16 bits long, with a 4-bit operation code (or opcode) and a 12-bit
address field (S) as shown in Figure 1.4. The simplest instruction set uses only eight
of the 16 available opcodes and 1s summarized in Table 1.1.
An instruction such as 'ACC = ACC + memy[S] means 'add the contents of the
(16-bit wide) memory location whose address 1s S to the accumulator’. Instructions
are fetched from consecutive memory addresses. starting from address zero. until an
mstruction which modifies the PC 15 executed. whereupon fetching starts from the new
address given in the 'jump' nstruction.



_:- | ”wluhile Computing - Faculty of Information Technology- University ufTripuﬂ | ||| - Dr. Baryun

MUDO instruction format

MUQ logic To understand how this instruction set might be implemented we will go through the
design design process in a logical order. The approach taken here will be to separate the

design info fwo components:

4 bits 12 bits
opcode S|

WM LTy

Figure 1.4  The MUO instruction format.

By: Dr. Abdussalam Baryun
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Simple Instruction Set

Table 1.1 The MUOD mnstruction set.

Instruction Opcode Effect

LDAS 0000 ACC =memglS]
STO S 0001 memyg[S] = ACC

ADD 5 0010 ACC := ACC + mem, 4[S]
SUB 5 0011 ACC := ACC —mem ¢[5]
JMP S 0100 PC =5

JGE § 0101 if ACC20 PC:=8

JNE 8§ 0110 if ACC=0 PC:=8§

STP D111 stop

by: DI. ADQUSSdIdM badryun
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Datapath design

e Each instruction takes exactly the number of clock
cycles defined by the number of memory accesses it
must make.

* Referring back to Table 1.1 we can see that the first
four instructions each require two memory accesses
(one to fetch the instruction itself and one to fetch or
store the operand) whereas the last four instructions
can execute in one cycle since they do not require an
operand. (In practice we would probably not worry
about the efficiency of the STP instruction since it halts
the processor for ever.)
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MUO data path

address bus

control “

data bus

By: Dr. Abdussalam Baryun
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Data path operation

 The design we will develop assumes that each
instruction starts when it has arrived in the
Instruction register.

e Until it is in the instruction register, MUO cannot
know which instruction it is dealing with.

* The processor must start in a known state.
Usually this requires a reset input to cause it to
start executing instructions from a known
address.
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an instruction executes in two stages, possibly omitting the
first of these:

1. Access the memory operand and perform the desired
operation. The address in the instruction register is issued
and either an operand is read from memory, combined
with the accumulator in the ALU and written back into the
accumulator, or the accumulator is stored out to memory.

2. Fetch the next instruction to be executed. Either the PC or
the address in the instruction register is issued to fetch the
next instruction, and in either case the address is
incremented in the ALU and the incremented value saved
into the PC.
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Control Logic design

* The control logic simply has to decode the current
instruction and generate the appropriate levels on the
datapath control signals, using the control inputs from
the datapath where necessary.

e Although the control logic is a finite state machine, and
therefore in principle the design should start from a
state transition diagram, in this case the FSM is trivial
and the diagram not worth drawing.

 The implementation requires only two states, 'fetch’
and 'execute’, and one bit of state (Ex/ft) is therefore
sufficient.



MUIO register fransfer level organization.

Dy. UVl. AVUUDDalalll pailyulii
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Register fransfer  The next step is to determine exactly the control signals that are required to cause
level design the datapath to carry out the full set of operations. We assume that all the registers
change state on the falling edge of the input clock. and where necessary have con-
trol signals that may be used to prevent them from changing on a particular clock
edge. The PC, for example will change at the end of a clock cycle where PCee
15 ' 1" but will not change when PCre1s '0'.
A sutable register orgamzation 1s shown i Figure 1.6 on page 11. This shows enables
on all of the registers, function select lines to the ALU (the precise number and mterpreta-
tion to be determuned later), the select control lines for two nmltiplexers. the control for a
tr-state driver to send the ACC value to memory and memory request (MEMrg) and
read/wiite (Rn¥) control hines. The other signals shown are outputs from the datapath to
the control logic, mcluding the opcode bits and signals mdicating whether ACC 15 zero or
negative which control the respective conditional jump mstrictions.

By: Dr. Abdussalam Baryun
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* The control logic can be presented in tabular
form as shown in Table 1.2.

e Once the ALU function select codes have been
assigned the table may be implemented

directly as a PLA (programmable logic array) or
translated into combinatorial logic and

implemented using standard gates.
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Table 1.2  MUO control logic.

Inputs Outputs
Opecoie Exft ACCIS Bsel PCce ACCoe MEMrg Ex/fi
Instruction * Reset * ACCz * Asel * ACCee * IRee + ALUfs + RnW '
Reset XNXX 1 X X X 0 0 | 1 l 1] = 1 l (i}
: (M) )] L] X | ] [ ] )] ] = 1 |
LDAS (HMHD 0 | X x ] 0 Ll | | 0 B+1 | | L
i 3 0001 i ] X x 1 x i ] i) 1 X 1 ] 1
STOS 6001 0 1 x x|0 © 0 1 1 0 B 1 1 ©
0o1o0 0 0 x x 1 l l 0 0 0 A+B 1 l 1
ADDS 050 0 1 x x|0 0 © 1 1 0 B+ 1 1 0
- (¥l 1 ] { X X | 1 | ] ] { AR | | |
SUB 5 1 ] | X ] 0 0 | | ] B+1 | 1 Ll
JIMP S 0100 L] x ¥ x 1 0 0 1 1 L] B+1 | | 0
0101 0 X X 0 1 0 0 | ] B+1 | l 0
IGE S 0101 0 X X 1 0 0 0 1 l 0 B+1 1 l 0
i 0110 0 it 0 1 0 0 | l 0 B+1 1 I 0
AP 2 0110 [l X 1 ] ] 0 | | { B+l | | 0
STP 0111 0 X X x ] X 0 ] 0 0 X 0 1 0

By: Dr. Abdussalam Baryun
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Instruction set design

If the MUD nstruction set 15 not a good choice for a high-performance processor,
what other choices are there?

Starting from first principles, let us look at a basic machine operation such as an
mstruction to add two numbers to produce a result.

f bits n bits n bits n bits nbits
| function | op 1 addr. | op 2 addr. | dest. addr. | next_i addr. |

Figure 1.8 A 4-address instruction format.

f bits n bits
fbits  nbits n bits n bits [fimation | o5 1 addrt
function | op 1 addr. l op 2 addr. | dest. addr. 1&-_—!
Figure 1.3 A 3-address instruction format. Figure 1.11 A 1-address (accumulator) instruction format.
f bits

f bits n bits n bits
function §
function | op 1 addr. | dest. addr. h

Figure 1.10 A 2-address instruction format. e

By: Dr. Abdussalam Baryun
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Addresses An address in the MUO architecture is the straightforward 'absolute’ address of the
memory location which contains the desired operand. However. the three addresses
in the ARM 3-address instruction format are register specifiers. not memory
addresses. In general. the term '3-address architecture' refers to an instruction set
where the two source operands and the destination can be specified independently of
each other. but often only within a restricted set of possible values.

By: Dr. Abdussalam Baryun
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Instruction Sets for efficient

implementations

* The art of processor design is to define an instruction
set that supports the functions that are useful to the
programmer whilst allowing an implementation that is
as efficient as possible.

 The semantic gap between a high-level language
construct and a machine instruction is bridged by a
compiler, which is a (usually complex) computer
program that translates a high-level language program
into a sequence of machine instructions.

* Instruction sets continue to evolve to give better
support for efficient implementations and for new
applications such as multimedia.
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Three Instruction Sets

ARM Thumb Jazelle
Instruction Size 32 bits 16 bits 8 bits
> 60% of Java byte
Core instructions 58 30 codes in hardware:
restin software
Only branch
Conditional Execution most instructionsorin an T N/A
block
Data processing Accessto barrel Separate barrel shifter N/A
instructions shifterand ALU and ALU instructions
Program status Read/write in : N/A
: S No direct access

register privileged mode

15 general purpose B Gsfae pRibo=. N/A

Registerusage

registers +pc

registers + 7 high
registers +pc
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Microprocessor Instruction States

 ARM Instruction within active ARM state:
— Load-Store architecture
— 32-bit wide and 3-address instruction format
— Original RISC processor (lots of parallelism)
* Thumb Instruction within active Thumb state:

— Subset of ARM instruction with some - -
re St ri Ct i O n S instruction instruction

- 16-bit Wide ADD r, #3
— Less parallelism
e Jazelle Instruction within active Jazelle state:

— To speed up Java byte code
— 8-bit wide

ADDS 10, 10, #3

f:uml:lor‘)ml:l'\

cpsr = nzevgifT_SVC

Thumb instruction decoding.
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Current Program Status Register

(CPSR)

* The ARM core uses the cpsr register to monitor and control internal
operations and instruction set state activation.

 The cpsris a dedicated 32-bit register and resides in the register file.

* Figure 2.3 shows the basic layout of a generic program status
register. Note that the shaded parts are reserved for future

* expansion.

 The cpsris divided into four fields, each 8 bits wide: flags, status,
extension, and control.

* In current designs the extension and status fields are reserved for
future use.

* The control field contains the processor mode, state, and interrupt
mask bits.

* The flags field contains the condition flags.
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Generic Program Status Register
(GPSR)

The current processor mode is stored in the cpsr. It holds the current status of the
processor core as well interrupt masks, condition flags, and state. The state
determines which instruction set is being executed.

Fields
Bit

Function

Flags Status Extension Control

| I I I |
31302928 7654 0
N|Z|C|V I'FIT| Mode
T | | : |
Condition Interrupt Processor

flags Masks mode

Thumb
state

Figure 2.3 A generic program status register
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States by CPSR register’s T bit

Table 2.2 ARM and Thumb instruction set features.

ARM (cpsr T=0) Thumb (cpsr T=1)
Instruction size 32-bit 16-bit
Core instructions 58 30
Conditional execution® most only branch instructions
Data processing access to barrel shifter and separate barrel shifter and
instructions ALU ALU instructions
Program status register read-write in privileged mode  no direct access
Register usage 15 general-purpose registers 8 general-purpose registers
+pc +7 high registers +pc

4 See Section 2.2.6.

Table 2.3  Jazelle instruction set features.

Jazelle (cpsr T =0,] = 1)

Instruction size 8-bit
Core instructions  Over 60% of the Java bytecodes are implemented in hardware;
the rest of the codes are implemented in software.
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Some notes

* Note when the processor is in Thumb state the pc
is the instruction address plus 4.

* You cannot intermingle sequential ARM, Thumb,
and Jazelle instructions.

* To execute Java bytecodes, you require the Jazelle
technology plus a specially modified version of
the Java virtual machine.

* |tisimportant to note that the hardware portion
of Jazelle only supports a subset of the Java
bytecodes; the rest are emulated in software.
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Some notes

* One of the most significant changes to the ISA was the
introduction of the Thumb instruction set inARMv4T
(the ARM7TDMI processor).

* Since Thumb has higher performance than ARM on a
processor with a 16-bit data bus, but lower
performance than ARM on a 32-bit data bus, use
Thumb for memory-constrained systems.

e There are no Thumb instructions to access the
coprocessors, and cpsr register.

 Thumb has higher/better code density—the space
taken up in memory by an executable program—than
ARM (see fig 4.1).
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Code Density

ARM code Thumb code
ARMDivide ThumbDivide
: IN: rO(value),rl(divisor) : IN: rO(value),rl(divisor)
» OUT: r2(MODulus),.r3(DIVide) s OUT: r2(MODulus),r3(DIVide)
MOV ri,#0 MOV r3,#0
loop loop
SUBS r0,r0,rl ADD r3.#1
ADDGE r3,r3,#1 SUB r0,rl
BGE Toop BGE loop
ADD rz,ro,rl SUB r3.#1
ADD rz,.ro,rl
5 x 4 = 20 bytes 6 x 2 =12 bytes

Figure 4.1 Code density.
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