
Android OS - Processes Management

Overview

 Android process management is similar to that of Linux at a low level,

 But the Android Runtime provides a layer of abstraction to help keep often

used processes in memory as long as it can.

This is done using some memory management techniques that are not common.

Is Android a Linux distribution?

 The short answer is NO.

 Android is based on the Linux kernel, but is not actually purely a “Linux

distribution”.

 A standard Linux distribution has a native windowing system, glibc and

some standard utilities. It does not have a layer of abstraction between the

user applications and the libraries.

Android Processes

 A process is an instance of an application that is currently running.

 An application can have one or more processes associated with it.

 Android uses a process-based approach to manage applications.

Process Management Overview

 Process management in a typical operating system involves many complex

data structures and algorithms,

 Android is similar in that at the base level the control structures look the

same.

Process Control Block (BCP)

This data structure is managed by a standard process management, which is

something like this:

Android Applications

Android applications differ from standard applications in a couple very significant

ways.

 Every android application:

 Runs in a separate process,

 Has its own Dalvik VM

 The designers assign each application a unique UID at install time.

This means the underlying Linux kernel can protect each

applications files and memory without additional effort.

 There is no single entry point for android applications.

 An application is a collection of components that can be used in

other applications if desired.

Concept Android Applications Standard Applications

Underlying System
Dalvik Virtual Machine (DVM) or

Android Runtime (ART)

Operating System

(Windows, macOS)

Process Management
Process-based (multiple

processes per app possible)

Single process per

application

Security
Sandboxed with restricted

access

More unrestricted access

to system resources

Permissions
Require explicit user permissions

for features

May not require granular

permission control

Hardware Integration

Optimized for mobile features

(touchscreen, GPS,

accelerometer)

Not optimized for mobile

features

Distribution
Primarily Google Play Store

(with some sideloading)

Downloaded files or

software provider

website

Zygote

 Android at its core has a process they call the “Zygote”, which starts up at

init.

 It gets its name from dictionary definition: "It is the initial cell formed when

a new organism is produced".

 This process is a “Warmed-up” process, which means it’s a process that’s

been initialized and has all the core libraries linked in.

 When you start an application, the Zygote is forked, so now there are 2

VMs.

 The real speedup is achieved by NOT copying the shared libraries.

 This memory will only be copied if the new process tries to modify it. This

means that all of the core libraries can exist in a single place because they

are read only.

Process Priority

Process priority can be set via the Process.setThreadPriority, At the base level, it

uses the same process nice levels as Linux.

1. Foreground process: A process that is required for what the user is

currently doing

 It is running an Activity at the top of the screen that the user is

interacting with (its onResume() method has been called).

 It has a BroadcastReceiver that is currently running

(its BroadcastReceiver.onReceive() method is executing).

 It has a Service that is currently executing code in one of its callbacks

(Service.onCreate(), Service.onStart(), or Service.onDestroy()).

2. Visible process: A process that doesn't have any foreground components,

but still can affect what the user sees on screen

 It is running an Activity that is visible to the user on-screen but not in

the foreground (its onPause() method has been called). This may occur,

for example, if the foreground Activity is displayed as a dialog that

allows the previous Activity to be seen behind it.

 It has a Service that is running as a foreground service,

through Service.startForeground(), such as playing music, navigation, or

a file download.

 It is hosting a Service that the system is using for a particular feature

that the user is aware, such as a live wallpaper, input method service,

etc.

3. Service process: A process that is running a service. Started with

startService() method. Such as

 Background Data Synchronization: EX- sync application data with a serve

 Playing music

 Uploading/downloading data

 Performing long-running operations

4. Background process: A process holding an Activity that's not currently

visible to the user (the activity's onStop() method has been called)

5. Cached process: A process that doesn't hold any active application

components. Only alive for caching purposes.

https://developer.android.com/reference/android/app/Service

Process Priority

Process Termination

When does a process die?

Processes can be killed in a couple discrete ways.

1. An application can call a method to kill processes it has permission to kill.

 If the process isn't part of the same application, it can't kill other

processes.

 On install you can actually grant an application permission to kill

other applications.

2. The Android OS has a least recently used queue that keeps track of which

applications haven't been used.

 If the OS starts to run out of memory, it will kill the least recently

used application.

 There is also priority given to applications that a user is interacting

with, or background services the user is interacting with.

Reasons for Termination:

 Normal Completion

 Low Memory: The Android system it might terminate background

processes with lower priority.

 User Action: The user can explicitly terminate an application by swiping it

away from the recent apps list.

 Resource Abuse: If an application consumes excessive resources (CPU,

memory, battery) for an extended period, the system might terminate it to

protect overall system performance.

 ANR (Application Not Responding): If an application becomes

unresponsive for a prolonged duration, the system might terminate it to

prevent a frozen user experience.

