_:- | ”H‘Iubile Computing - Faculty of Information Technology- University of Tripﬂm |||

ARM Processors
ITMC301
Architecture Performance - L2
Fall 2023

By: Dr. Abdussalam Nuri Baryun

—_L- HH‘Inhile Computing - Faculty of Information Technology- University of Tripuﬁ . |I| - Dr. Baryun

ARM use load-store

* The ARM processor, like all RISC processors,
uses a load-store architecture.

* This means it has two instruction types for
transferring data in and out of the processor:
load instructions copy data from memory to
registers in the core, and store instructions
copy data from registers to memory.

 There are no data processing instructions that
directly manipulate data in memory.

__[_ ”ﬂ‘lnhlle Computing - Faculty of Information Technology- University ufTr:pnﬁ |I|-:
What is instruction set architecture?

(ISA)

 The operation codes encodings of instructions that
are executed by an Arm-based processor. Also
includes other aspects as well such as the exception

model, system programming features, memory
management and suchlike.

* ISA is a legal contract, between hardware and
software.

—_L- HH‘Inhile Computing - Faculty of Information Technology- University of Tripuﬁ . |I| -E
How do you decide which instructions

to include in an ISA?

* When we are looking at requests from partners or from
internal research to add a new instruction, we go through
quite a long process of trying to justify that instruction, or,
quite commonly, a set of instructions rather than a single
instruction.

 We have to show that it gives us some real benefit in
performance, the performance of your code running on
that CPU. Or maybe not performance.

 Maybe it's security you're trying to achieve. But it has to
give you some really concrete benefit that is worth the cost
of adding all of the software, the validation software, the
implementation costs for all of the different
implementations, compiler support, so on and so forth.

__U-j”iilluhile Computing - Faculty of Information Technology- University of Tripuﬁ . |I| -E
What is the difference between an ISA

and a microarchitecture?

 The difference between ISA and the microarchitecture
is that the ISA is an abstract concept.

* |t defines a set of instruction encodings which software
can use, and which hardware has to recognize and
implement.

* How that is implemented is a choice for the
microarchitecture. So the instruction set architecture is
fixed, it's defined by Arm.

* The microarchitecture is defined by whatever team of
people is designing that CPU.

* For microarchitecture, there are many different
approaches to implementing the Arm architecture.

__U- ”H‘Inhile Computing - Faculty of Information Technology- University of Tripuﬁ . |I| - Dr. Baryun

Microarchitecture

* Defined by whatever team of people is designing that
CPU. And there are many different approaches to
implementing the Arm architecture, from very small,
efficient cores with in-order pipelines up to very high-
performance, state-of-the-art, out-of-order execution,
and everywhere in between.

* So the microarchitecture is implementation-specific,
the architecture is generic, and software written for
the architecture should run on any microarchitecture.

| - [”H‘Inhile Computing - Faculty of Information Technology- University of Tripuﬁ | ”I - Dr. Baryun

* Q: Why does Arm produce processors with different instruction sets
or/and different architecture?

— Arm supports multiple instruction sets.

— Some of that is to do with legacy: you can't abandon your legacy software,
your legacy ecosystem.

— As the architecture has advanced and we've introduced major new instruction
sets, we still have to continue to support old software. It takes years, maybe
10 years to move the software ecosystem to a major new ISA.

 Therefore, the Answer is there are different instruction sets for reasons of
the market that they're trying to address, and then there are different
instruction sets because, to support legacy software and new developed
technologies.

__U- ”H‘Inhile Computing - Faculty of Information Technology- University of Tripuﬁ . |I| - Dr. Baryun

* For example, AArch64, which is the 64-bit

architecture that with introduced with
ARMvVS,

* also supported the AArch, what we called
AArch32, the old 32-bit architecture that was
implemented in the ARMv7 architecture, and
prior to that including the Arm and the Thumb
Instruction sets.

_:- | ”H‘Iubile Computing - Faculty of Information Technology- University of Tripﬂm |||
Translate to binary by

the microprocessor assembler

* Using sequence of instructions we can build
programs

_:- | ”H‘Iubile Computing - Faculty of Information Technology- University of Tripﬂm |||

Example

0: CMP X1, X2 0

il

:-m“‘luhile Computing - Faculty of Information Technology- University nfTripum m- Dr. Baryun

Lab: Asim (ARM®64 simulator)

https://github.com/arm-university/Graphical-
Micro-Architecture-Simulator

How to Use

Either clone this repository or download the simulator here.

1. Navigate to /LEGv8_Simulator/war directory and open LEGv8_Simulator using a web browser.

2. Click the Help tab on the top right of the simulator, which contains further documentation on usage.

_:- | ”H‘Inbile Computing - Faculty of Information Technology- University of Tripum ||| - Dr. Baryun

Microprocessor Performance

* The performance depends on both ARM
architecture and microarchitecture.

Average clock
= cyclesper X Clock period
instruction

Time taken
per instruction

Time taken per instruction

Number of Average clock
= instructions X cycles per x Clock period
in program instruction

Time taken
per program

_:- | ”H‘Iubile Computing - Faculty of Information Technology- University of Tripﬂm |||

Two possible ways with trade-offs

Number of Average clock
= instructions X cycles per x Clock period
in program instruction

Time taken
per program

Program optimization from
programmer or compiler

Number of Average clock
= instructions X cycles per x Clock period
in program instruction

Time taken
per program

More complex
instructions

_:- | ”HIubile Computing - Faculty of Information Technology- University of Tripﬂm |||

Third optional way

Number of Average clock
= instructions X cycles per x Clock period
in program instruction

Time taken
per program

$ Faster transistors
in the circuit

_:- | ”HIubile Computing - Faculty of Information Technology- University of Tripum |||

Using then pipelining

Number of Average clock
= instructions X cycles per X Clock period
in program instruction

Time taken
per program

Pipelining

obile Computing - Faculty of Information Technology- University of Tripo

Example: having two stage will
increase avg cycle per instruction by 2

_:- | ”HIubile Computing - Faculty of Information Technology- University of Tripum |||

Increasing stages for pipelining by using
registers can increase performance.

_:n-mh‘luhile Computing - Faculty of Information Technology- University of Tripuﬂ | m- Dr. Baryun

Components of ARM microprocessor

* Processing without pipelining

Decode
Logic

Instruction Reister Fil Data Memory
Memory egister File

Program
Counter

Branch Unit

I || Wiobile Computing - Faculty of Information Technology- University of Tripol |||| [l or-8anun
Process 1 (Fetch)

Decode
Logic

Instruction - - Data Memory
Register File

Program
Counter

Branch Unit

_:n-mh‘luhile Computing - Faculty of Information Technology- University of Tripuﬂ | m- Dr. Baryun

Process 2 (Decode)

Instruction Register Fil Data Memory
Memory egister File

Program
Counter

Branch Unit

Decode

_:n-mh‘luhile Computing - Faculty of Information Technology- University of Tripuﬂ | m- Dr. Baryun

Process 3 (Execute)

Decode
Logic

Instruction - - Data Memory
Register File

Memory

Program
Counter

Branch Unit

—:_[”H‘Iuhile Computing - Faculty of Information Technology- University ufTripuﬂ”"- Dr. Baryun

Pipelining: Two stage

e Using pipeline register (shovyn in blue)

Pipeline
Decode Register

Instruction Data Memory
Register File

Program
Counter

Fetch Stage Execute Stage

_:- | ”H‘Inbile Computing - Faculty of Information Technology- University ufTripnm ||| - Dr. Baryun

Example: ARM7 three stage pipeline

Fetch Decode Excculc]

ARM7 Three-stage pipeline.
® Fetch loads an instruction from memory.

® Decode identifies the instruction to be executed.

B Execute processes the instruction and writes the result back to a register.

_:- | ||H‘Inhile Computing - Faculty of Information Technology- University ufTripnﬂ | ||| - Dr. Baryun

Example: ARM9 and ARM10

O Fetch)—'{}Decodc)—'{]Exccute]—'O Memnry)—'{) Write)

ARM? five-stage pipeline.

0 Fetch)—'{} Issue)—'{]Dccodc]—'o Excculc)—'{]Mcnmry)—'ﬂ Write]

ARM10 six-stage pipeline.

_:- | ”wluhile Computing - Faculty of Information Technology- University ufTripuﬂ | ||| - Dr. Baryun

Comparing with different pipelines

Table 2.9 ARM family attribute comparison.

ARMY ARM9 AERMI10 ARMI11
Pipeline depth three-stage five-stage six-stage eight-stage
Typical MHz a0 150 260 335
mW/MHz? 0.06 mW/MHz 0.19mW/MHz 0.5 mW/MHz 0.4 mW/MHz

(+ cache) (4 cache) (+ cache)

MIPS"/MHz 0.97 1.1 1.3 1.2
Architecture Von Neumann Harvard Harvard Harvard
Multiplier 8 x 32 8 x 32 16 x 32 16 x 32

4 Watts/MHz on the same 0.13 micron process.
b MIPS are Dhrystone VAX MIPS.

_:_HIH‘Iuhile Computing - Faculty of Information Technology- University nfTripum m- Dr. Baryun

Pipelining: Five stages

* Using four pipeline registers (|)

| Green fuud Yellow _ [P g Orange

Fetch Stage Decode Stage Execute Stage Memaory Stage Writeback Stage

Decode Logic Data Memory

_:- | ||wlnhile Computing - Faculty of Information Technology- University ufTripuﬂ | ||| - Dr. Baryun

The Reference:

[1] A., Sloss, et al., ARM System Developer’s
Guide.

[2] ARM documents, www.arm.com

By: Dr. Abdussalam Baryun

