
Mobile OS architectures

What is an Operating System?

An operating system (OS) : is a system software component that manages and controls

the computer hardware and software resources and provides common services to

computer programs.

Android Operating System

Android is a mobile operating system based on a modified version of the Linux kernel

and other open-source software, designed primarily for touchscreen mobile devices

such as smartphones and tablets.

Features of Android Operating System

Below are the following unique features and characteristics of the android operating

system, such as:

1. Near Field Communication (NFC)

Near Field Communication, commonly abbreviated as NFC, is defined as a

wireless personal area network (PAN) technology that connects two

compatible devices in very close proximity to each other, in order to enable

slow but reliable data transfer.

2. Infrared Transmission

The Android operating system supports a built-in infrared transmitter that allows

you to use your phone or tablet as a remote control.

3. Automation

The Tasker app allows control of app permissions and also automates them.

Note: What Is Tasker?

Tasker is a powerful app that can help you automate a wide range of day-to-day tasks

on your Android smartphone. It can single-handedly replace hundreds of purpose-

specific apps and gives you a tool to tweak your device in all sorts of ways.

4. Custom ROMs

The process of installing a custom ROM typically involves several steps:

1. Unlocking the Bootloader: Most Android devices come with a locked

bootloader that needs to be unlocked for custom ROM installation.

2. Rooting the Device: not always necessary.

3. Installing a Custom Recovery: A custom recovery, like TWRP (Team Win

Recovery Project), replaces the stock recovery software and provides the

tools needed to install custom ROMs.

4. Flashing the ROM: After backing up the device's existing software, the

custom ROM can be installed (flashed) using the custom recovery

environment.

Risks and Considerations

 Warranty Void: custom ROM can void the manufacturer's warranty.

 Security Risks: Some custom ROMs might not follow the same rigorous

security protocols as official releases.

 Stability Issues: some ROMs might have bugs or stability issues.

 Update and Support: updates depend on the community or developers

supporting the ROM.

Popular Custom ROMs

 LineageOS

 Resurrection Remix

 Pixel Experience

 Paranoid Android

5. Wireless App Downloads

6. Storage and Battery Swap

7. Custom Home Screens

8. Widgets

Most-Popular-Custom-ROMs-for-Android

Architecture of Android OS

The following diagram shows the major components of the Android platform.

1. The Linux Kernel

The foundation of the Android platform is the Linux kernel.

The features of the Linux kernel are:

 Security: The Linux kernel handles the security between the application and

the system.

 Memory Management: It efficiently handles memory management, thereby

providing the freedom to develop our apps.

 Process Management: It manages the process well, allocates resources to

processes whenever they need them.

 Network Stack: It effectively handles network communication.

 Driver Model: It ensures that the application works properly on the device

and hardware manufacturers responsible for building their drivers into the

Linux build

2. Hardware Abstraction Layer (HAL)

The hardware abstraction layer (HAL) provides standard interfaces that expose

device hardware capabilities to the higher-level Java API framework.

The HAL consists of multiple library modules, each of which implements an

interface for a specific type of hardware component, such as

the camera or Bluetooth module.

When a framework API makes a call to access device hardware, the Android

system loads the library module for that hardware component.

Structure of Android HAL

The Android HAL is structured into multiple layers, with each layer responsible

for abstracting different aspects of the hardware:

1. HAL Interface Layers:

- defined by Android and specify how the operating system interacts with

hardware services.

- The interfaces are generally specified in Interface Definition Language

(IDL) files, which recently include HIDL (HAL Interface Definition

https://source.android.com/devices/architecture/hal-types

Language) or AIDL (Android Interface Definition Language) for newer

services.

2. HAL Implementation:

- This is the vendor-specific implementation that actually communicates

with the hardware.

- Each hardware component manufacturer provides their own

implementation of the HAL that adheres to the interfaces defined by

Android.

3. Vendor Modules:

- These are dynamic shared libraries loaded by the Android system at

runtime.

How Android HAL Works

 Service Management: Android HAL uses the binder IPC (Inter-Process

Communication) mechanism to allow communication between the HAL and

Java application layers.

 Modular Approach: Each type of hardware component (like camera,

sensors, audio, etc.) has its own HAL module. This modularity allows each

component to be developed, updated, and maintained independently of

others.

Examples of HAL in Android Devices

 Camera HAL: Manages interactions between the camera hardware

components and the high-level camera application.

 Audio HAL: Deals with the audio management of the device, including audio

output and input capabilities across various sound hardware.

 Sensor HAL: Handles data from device sensors, providing a uniform interface

for motion, orientation, temperature sensors, and more.

3. Android Runtime

For devices running Android version 5.0 (API level 21) or higher, each app runs in

its own process and with its own instance of the Android Runtime (ART).

ART is written to run multiple virtual machines on low-memory devices by

executing DEX files, a bytecode format designed specially for Android that's

optimized for minimal memory footprint. Build tools, such as d8, compile Java

sources into DEX bytecode,

Note: d8 is a command-line tool that Android Studio and the Android Gradle plugin use to

compile your project's Java bytecode into DEX bytecode that runs on Android

devices. d8 lets you use Java 8 language features in your app's code.

Some of the major features of ART include the following:

 Ahead-of-time (AOT) and just-in-time (JIT) compilation

- ART compiles apps at the time of installation into native machine code.

- applications launch faster and use less CPU and battery.

- it results in larger application storage size because each app includes

compiled native code.

 Optimized garbage collection (GC)

- minimizes application pauses,

- helping to ensure smoother UI animations and improved

responsiveness in apps.

 Better debugging support.

- ART supports a wider range of development and debugging features

that improve profiling of applications,

- helping developers understand performance issues and optimize their

code effectively.

How ART Works

When an application is installed on an Android device,

- ART compiles the app’s bytecode (from DEX files) into native machine

code using its AOT compiler.

- machine code is then executed by the Android device’s processor.

- During execution, ART also uses JIT compilation techniques to optimize

the performance of the native code further.

https://developer.android.com/studio/command-line/d8

4. Native C/C++ Libraries

Many core Android system components and services, such as ART and HAL, are

built from native code that require native libraries written in C and C++.

The Android platform provides Java framework APIs to expose the functionality

of some of these native libraries to apps.

 app: Provides access to the application model and is the cornerstone of all

Android applications.

 content: Facilitates content access, publishing and messaging between

applications and application components.

 database: Used to access data published by content providers and

includes SQLite database, management classes.

 OpenGL: A Java interface to the OpenGL ES 3D graphics rendering API.

 os: Provides applications with access to standard operating system services,

including messages, system services and inter-process communication.

 text: Used to render and manipulate text on a device display.

 view: The fundamental building blocks of application user interfaces.

 widget: A rich collection of pre-built user interface components such as

buttons, labels, list views, layout managers, radio buttons etc.

 WebKit: A set of classes intended to allow web-browsing capabilities to be

built into applications.

 media: Media library provides support to play and record an audio and

video format.

 surface manager: It is responsible for managing access to the display

subsystem.

 SSL: Secure Sockets Layer is a security technology to establish an

encrypted link between a web server and a web browser.

5. Java API Framework

Application Framework provides several important classes used to create an

Android application.

It includes different types of services, such as:

 Activity Manager: Controls all aspects of the application lifecycle and activity

stack.

 Content Providers: Allows applications to publish and share data with other

applications.

 Resource Manager: Provides access to non-code embedded resources such

as strings, colour settings and user interface layouts.

 Notifications Manager: Allows applications to display alerts and notifications

to the user.

 View System: An extensible set of views used to create application user

interfaces.

6. System Apps

Android comes with a set of core apps for email, SMS messaging, calendars,

internet browsing, contacts, and more.

Android Boot Process

Android Boot Process includes the following six steps:

1. Boot ROM:

- Is known as power ON and system startup.

- Whenever we press the power button, the Boot ROM code starts

executing from a pre-defined location which is hardwired in ROM.

- Boot ROM loads the BootLoader into RAM and starts executing.

2. BootLoader:

- Bootloaders is a low-level code contains the instructions that tell a

device how to start up and find the system kernel.

- A Bootloader is a place where manufacturers put their locks and

restrictions.

- The bootloader is a code that is executed before any Operating System

starts to run.

The BootLoader executes in 2 Stages:

a) first stage, it detects external RAM and loads a program which

helps in the second stage.

b) second stage, the bootloader setups the network, memory etc

which requires to run Kernel.

3. Kernel:

- Once kernel boots, it starts setup

 cache,

 protected memory,

 scheduling,

 loads drivers,

 starts kernel daemons,

 mounts root file system,

 initializing Input/Output,

 starts interrupts,

 initializes process table.

- When kernel finish system setup first thing it looks for “init” in system

files and launch root process or first process of a system.

4. Init:

- Init is the very first process or we can say that it is the grandfather of all

the processes.

5. Zygote and Dalvik VM:

- The Zygote process is a specialized parent process for all Android

application processes.

- It serves as a template for creating new application processes and helps in

optimizing application startup times by preloading common resources

and libraries.

6. System Servers: After zygote preloads all necessary Java Classes and resources, it

starts System Server.

- The System server is the core of the Android system.

- The first thing that happens is that the server will load a native library called

android_servers that provides interfaces to native functionalities.

- Then the native init method that will setup native services called.

- After setting up the native services it creates the server thread.

- This thread will start the remaining services in the system according to the

necessary start order.

- Each service is running in a separate Dalvik thread in the SystemServer.

Once system Services up and running in memory, Android has completed boot

process, At this time “ACTION_BOOT_COMPLETED” standard broadcast action will

fire.

iOS Architecture

There are four abstraction levels in it.

 Core OS Layer: This layer forms the foundation of the iOS architecture. It

provides essential functionalities like memory management, security, and task

scheduling. Frameworks like Core Bluetooth, Core Foundation, and Kernel

frameworks reside in this layer.

 Core Services Layer: This layer offers core functionalities that applications

heavily rely on. It includes services like multitasking, networking, location

services, and file system access. Some important frameworks in this layer are

Address Book, CloudKit, Core Motion, and Core Location.

 Media Layer: this layer deals with everything multimedia-related. It provides

frameworks for handling graphics, audio, and video. Core Animation, Core

Graphics, AVFoundation.

 Cocoa Touch: This framework is the heart of iOS application development. It

provides UI components (UIKit), user interaction APIs (UIKit), and application

lifecycle management (Foundation).

