
1

Artificial Intelligence (CSBP480)

Introduction to

Natural Language Processing (3)

Use Extra Arguments

Lecture 8: More DCGs

➢Theory

❖Examine two important capabilities offered by

DCG notation:

o Extra arguments

o Extra tests

❖Discuss the status and limitations of DCGs

Extra arguments

➢In the previous lecture we introduced basic

DCG notation

➢But DCGs offer more than we have seen so

far

❖DCGs allow us to specify extra arguments

❖These extra arguments can be used for many

purposes

Extending the grammar

s --> np, vp.

np --> det, n.

vp --> v, np.

vp --> v.

det --> [the].

det --> [a].

n --> [boy].

n --> [cat].

v --> [chased].

➢This is a simple grammar

➢ Suppose we also want to deal

with sentences containing

pronouns such as

 she chased him

and

 he chased her

➢What do we need to do?

Extending the grammar

s --> np, vp.

np --> det, n.

np --> pro.

vp --> v, np.

vp --> v.

det --> [the].

det --> [a].

n --> [boy].

n --> [cat].

v --> [chased].

pro --> [he].

pro --> [she].

pro --> [him].

pro --> [her].

➢Add rules for pronouns

➢Add a rule saying that noun

phrases can be pronouns

➢ Is this new DCG any good?

➢What is the problem?

Some examples of grammatical

strings accepted by this DCG

s --> np, vp.

np --> det, n.

np --> pro.

vp --> v, np.

vp --> v.

det --> [the].

det --> [a].

n --> [boy].

n --> [cat].

v --> [chased].

pro --> [he].

pro --> [she].

pro --> [him].

pro --> [her].

?- s([the, boy, chased, her], []).

yes

?- s([the, cat, chased, him], []).

yes

Some examples of ungrammatical strings

accepted by this DCG

s --> np, vp.

np --> det, n.

np --> pro.

vp --> v, np.

vp --> v.

det --> [the].

det --> [a].

n --> [boy].

n --> [cat].

v --> [chased].

pro --> [he].

pro --> [she].

pro --> [him].

pro --> [her].

?- s([the, cat, chased, he],[]).

yes

?- s([her, chased, a, boy], []).

yes

s([her, chased, she], []).

yes

What is going wrong?

➢The DCG ignores some basic facts about
English

❖she and he are subject pronouns and cannot be
used in the object position

❖her and him are object pronouns and cannot be
used in the subject position

➢It is obvious what we need to do: extend the
DCG with information about subject and
object

➢How do we do this?

A naïve way: change notation…

s --> np_subject, vp.

np_subject --> det, n. np_object --> det, n.

np_subject --> pro_subject. np_object --> pro_object.

vp --> v, np_object.

vp --> v.

det --> [the].

det --> [a].

n --> [boy].

n --> [cat].

v --> [chased].

pro_subject --> [he].

pro_subject --> [she].

pro_object --> [him].

pro_object --> [her].

Better way: use extra arguments

s --> np(subject), vp.

np(_) --> det, n.

np(X) --> pro(X).

vp --> v, np(object).

vp --> v.

det --> [the].

det --> [a].

n --> [boy].

n --> [cat].

v --> [chased].

pro(subject) --> [he].

pro(subject) --> [she].

pro(object) --> [him].

pro(object) --> [her].

This works…

s --> np(subject), vp.

np(_) --> det, n.

np(X) --> pro(X).

vp --> v, np(object).

vp --> v.

det --> [the].

det --> [a].

n --> [boy].

n --> [cat].

v --> [chased].

pro(subject) --> [he].

pro(subject) --> [she].

pro(object) --> [him].

pro(object) --> [her].

?- s([she, chased,him],[]).

yes

?- s([she, chased, he],[]).

no

?-

What is really going on?

➢Recall that the rule:

 s --> np, vp.

is really a syntactic sugar for:

 s(A,B):- np(A,C), vp(C,B).

What is really going on?

➢Recall that the rule:

 s --> np,vp.

is really syntactic sugar for:

 s(A,B):- np(A,C), vp(C,B).

➢Then the rule

 s --> np(subject), vp.

Is represented in prolog as:

 s(A,B):- np(subject,A,C), vp(C,B).

Listing noun phrases

s --> np(subject), vp.

np(_) --> det, n.

np(X) --> pro(X).

vp --> v, np(object).

vp --> v.

det --> [the].

det --> [a].

n --> [boy].

n --> [cat].

v --> [chased].

pro(subject) --> [he].

pro(subject) --> [she].

pro(object) --> [him].

pro(object) --> [her].

?- np(Type, NP, []).

Type =_

NP = [the,boy];

Type =_

NP = [the,cat];

Type =_

NP = [a, boy];

Type =_

NP = [a, cat];

Type =subject

NP = [he]

Building parse trees

➢The programs we have discussed so far

have been able to recognise grammatical

structure of sentences

➢But we would also like to have a program

that gives us an analysis of their structure

➢In particular we would like to see the trees

the grammar assigns to sentences

16

Syntax Tree

➢s(np(det(the), n(boy)), vp(tv(likes),

 np(det(the), n(cat))))

N

the the

Det

NP VP

Det

S

boy cat
likes

NP

TV
N

17

Grammar rules in Prolog

➢Prolog allows us to add arguments to the
grammar rule.

➢So, we can write the rules as:

 s(s(NP,VP))--> np(NP), vp(VP).

 np(np(N)) --> pronoun(N).

 np(np(Det,N)) --> det(Det), n(N).

 vp(vp(V)) --> itv(V).

 vp(vp(TV,NP))--> tv(TV), np(NP).

18

Grammar rules in Prolog

➢We can use this lexicon (dictionary)
 pronoun(pn(i))-->[i].

 det(det(the))-->[the].

 n(n(cat))-->[cat].

 n(n(boy))-->[boy].

 n(n(ball))-->[ball].

 tv(tv(hit))-->[hit].

 tv(tv(likes))-->[likes].

 itv(itv(run))-->[run].

19

Reading from the keyborad

➢ Prolog has a built in predicate called readln(S).

➢ It allows you to read a line and put it in a list.

➢ We can use it to read a sentence:

❖ run :-

readln(S),

s(Tree,S,[]),

write(“Syntax Tree: “),

write(Tree).

20

Try the grammar

➢Now load your grammar and run it.

 | ?-run.

	Slide 1: Artificial Intelligence (CSBP480)
	Slide 2: Lecture 8: More DCGs
	Slide 3: Extra arguments
	Slide 4: Extending the grammar
	Slide 5: Extending the grammar
	Slide 6: Some examples of grammatical strings accepted by this DCG
	Slide 7: Some examples of ungrammatical strings accepted by this DCG
	Slide 8: What is going wrong?
	Slide 9: A naïve way: change notation…
	Slide 10: Better way: use extra arguments
	Slide 11: This works…
	Slide 12: What is really going on?
	Slide 13: What is really going on?
	Slide 14: Listing noun phrases
	Slide 15: Building parse trees
	Slide 16: Syntax Tree
	Slide 17: Grammar rules in Prolog
	Slide 18: Grammar rules in Prolog
	Slide 19: Reading from the keyborad
	Slide 20: Try the grammar

