
ITMC311 Introduction to Mobile

Application Development

Introduction to

 - Android Studio

 - Mobile Application Components

Android Studio
 Google's official Android IDE, in v1.0

 as of November 2014

 replaces previous Eclipse-based environment

 based on IntelliJ IDEA editor

 free to download and use

 Java SE Development Kit 8

 What is Android?

 originally purchased from Android, Inc. in 2005

 runs on phones, tablets, watches, TVs, ...

 based on Java (dev language) and Linux (kernel)

 and now #1 overall OS worldwide!

Android version history
Version API level Date Name
1.0-1.1 1,2 Sep 2008 none
1.5 3 Apr 2009 Cupcake
1.6 4 Sep 2009 Donut
2.0-2.1 5,6,7 Oct 2009 Eclair
2.2 8 May 2010 Froyo
2.3 9,10 Dec 2010 Gingerbread
3.0 11,12,13 Feb 2011 Honeycomb
4.0 14,15 Oct 2011 Ice Cream Sandwich
4.1-4.3 16,17,18 Jun 2012 Jelly Bean
4.4 19,20 Sep 2013 Kit Kat
5.0-5.1 21, 22 Jun 2014 Lollipop
6.0 23 May 2015 Marshmallow
7.0-7.1 24-25 August 2016 Nougat
8.0 26-27 August 2017 Oreo
9.0 28 August 2018 Pie

HTC Dream Oct 08

Global Android version distribution

since December 2009, as of October

2018

Project structure

6

App manifest

Java code

Resources

Build scripts

7

Android Manifest – example.
 Its main purpose in life is to declare the components to the system:

 Overall project config and settings.

 Every application must have an AndroidManifest.xml file.

 Contains essential information the Android system must have

before it can run any of the app's code.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.demo">
 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity
 android:name="com.example.demo.MainActivity"
 android:label="@string/app_name"
 android:theme="@style/AppTheme.NoActionBar">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Project structure (Cont.)
 src/java/...

 source code for your Java classes

 Example: MainActivity.java

 determines the Activity's behavior

 res/... = resource files (many are XML)

 drawable/ = images

 layout/ = descriptions of GUI layout

 menu/ = overall app menu options

 values/ = constant values and arrays

 strings = localization data

 styles = general appearance styling

 Example: Main_Activity.xml

 determines most of the visual appearance

 resource files (many are XML)







What is Android build system

(Gradle)?
 Gradle

 a build/compile management system

 Example: build.gradle = main build config file

 It is the toolkit you use to build, test, run and package your apps.

 It can run as an integrated tool from the Android Studio menu and

independently from the command line.

 You can use the features of the build system to:

 Customize, configure, and extend the build process.

 Create multiple APKs for your app with different features using

the same project and modules.

 Reuse code and resources across source sets.

The components involved in

building and running an app

Step-1: Android build system

Step-1: Continued
 The Android Asset Packaging Tool (aapt) takes your application

resource files, such as the AndroidManifest.xml file and the XML

 files for your Activities, and compiles them. An R.java is also

 produced so you can reference your resources from your Java code.

 The Android Interface Definition Language tool (aidl) converts

any .aidl interfaces that you have into Java interfaces.

 The Java compiler (javac) compiles all of your Java code,

including the R.java and .aidl files to produce .class files as an

output output.

Step-2: Android build system
 The dex convertor converts the .class files to Dalvik byte code. Any 3rd

party libraries and .class files that you have included in your module

build are also converted into .dex files so that they can be packaged into

the final .apk file.

Step-3: Android build system
 The apkbuilder tool packages all non-compiled resources (such as

images), compiled resources, and the .dex files into an .apk file.

Step-4: Android build system
 Jarsigner signs the .apk

 with either a debug

 or release key before

 it can be installed to a device.

 zipalign is an archive alignment

 tool that provides important

 optimization to signed in release

 mode .apk files. Aligning the final

 .apk decreases memory usage

 when the application is -running

 on a device.

App Components
 An essential building blocks of an Android app. Each component is

a different point through which the system can enter your app. Each

one is a unique building block that helps define your app's overall

behavior.

 Several types of app components:

 Activities

 Intents

 Services

 Content providers

 BroadCast Receiver

Activities
 An activity represents a single screen with a user interface.

 For example:

 An email app might have one activity

 that shows a list of new emails,

 another activity to compose an email,

 and another activity for reading emails.

The activities work together to form a cohesive

user experience in the email app, each one is

independent of the others. As such, a different

app can start any one of these activities

(if the email app allows it).

Activities (Cont.)
 Several Activities constitute an App

Intents
 An intent is a mechanism for describing a specific action. Briefly

describe what should be done.

 In Android, just about everything goes through intents

 For example:

 intent for “send an email.” If your application needs to send mail, you can
invoke that intent.

 if you’re writing a new email application, you can register an activity to
handle that intent and replace the

 standard mail program.

 The next time somebody tries

 to send an email, they’ll get
 the option to use your program

 instead of the standard one.

types of intents:
 Explicit intents

 specify the component to start

 by name (the fully-qualified

 class name).

 Example:

 start a new activity in response

 to a user action or start a service

 to download a file in the background.

 Implicit intents

 do not name a specific component, but instead declare a general action
to perform, which allows a component from another app to handle it.

 Example:

 if you want to show the user a location on a map, you can use an implicit
intent to request that another capable app show a specified location on a

map.

Services
 A service is a component that runs in the background:

 to perform long-running operations

 to perform work for remote processes.

 A service does not provide a user interface.

 For example:

 a service might play music in the background

 while the user is in a different app,

 or it might fetch data over the network without

 blocking user interaction with an activity.

 Another component, such as an activity,

 can start the service and let it run or bind

 to it in order to interact with it

A service can essentially take

two forms:
 Started: A service is "started"

 when an application component (such as an activity) starts it by

calling startService().

 Usually, a started service performs a single operation and does not

return a result to the caller.

 For example,

 it might download or upload a file over the network. When the

operation is done, the service should stop itself.

 Bound: A service is "bound"

 when an application component binds to it by calling bindService().

 A bound service offers a client-server interface that allows

components to interact with the service, send requests, get results,

and even do so across processes with interprocess communication

(IPC).

 A bound service runs only as long as another application

component is bound to it.

 Components that manage a shared set of

application data.

 The data is stored at one of the following formats:

1. In the file system.

2. In an SQLite database.

3. on the web.

4. More..

Essentially you can store it in any persistent storage

location your application can access.

The Content providers.

 Through the content provider, other

applications can query or even modify the

data (if the content provider allows it).

 Providers are also useful for reading and

writing data that is private to your application

and is not shared.

The Content providers.

Here’s a few examples for system content
providers:

 any app with the proper permissions can

query part of the content provider

 Contacts.

 Text messages.

 Phone calls.

The Content providers –

examples.

Broadcast receivers
 Broadcast receivers are components in the application that listen for

broadcasts and take some action.

 Broadcast Receivers have no user Interface.

 For example:

 When SMS / Call is received

 Battery low

 Network state Changed

 Photo captured from camera

 Phone Starts

You can find more information

about
 activities:

https://developer.android.com/guide/components/activities.html

 Intents

 https://developer.android.com/guide/components/intents-filters.html

 Services:

 https://developer.android.com/reference/android/app/Service.html

 Content providers:

 https://developer.android.com/reference/android/content/ContentPro

vider.html

 Broadcast receivers:

 http://developer.android.com/reference/android/content/BroadcastR

eceiver.html

https://developer.android.com/guide/components/activities.html
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/reference/android/app/Service.html
https://developer.android.com/reference/android/content/ContentProvider.html
https://developer.android.com/reference/android/content/ContentProvider.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html

