ITSE322 Modern Programming Language:
Advanced Java

Multithreaded Programming using Java
Threads

Lecture 5

Learning Objectives

* Understand the concept of
multithreading

* Create programs with multi-threads

* Accessing Shared Resources
*Synchronisation

* Understand Advanced Topics:
*Concurrency Models: master/worker,
pipeline, peer processing
* Multithreading Vs multiprocessing

Java programs are single threaded

class ABC

{
public void main(..) begin
{
o body
} end

Whatis a Thread?

*A piece of code that runs in concurrent with
other threads.

* They are essential for performing background
tasks like file downloads, data processing, or
network communication without blocking the
main program flow.

*Threads allow for better resource utilization
by allowing different parts of a program to
wc;]rk Independently without waiting for each
other.

*They are essential for implementing
concurrent data structures and
synchronization mechanisms to ensure
thread safety and avoid data inconsistency.

We can write Multithreaded Programs

Main Thread

start
start start

Thread A

Threads may switch or exchange data/results

Thread B

Thread C

Single and Multithreaded Processes

threads are light-weight processes within a process

Single-threaded Process Multiplethreaded Process
Threads of
\

" Execution

— / IR s
/

N /
\ Multiple instruction stream

Single instruction stream Common

Address Space

Multithreaded Server: For Serving
Multiple Clients Concurrently

Client 1 Process Server Process

@

Client 2 Pr(oce/

Server
sThreads $

:

= Internet

2

Web Applications:
Serving Many Users Simultaneously

f ‘:?@v“J PC client
2,d@
oL Eji.' .

Internet
Server

@

Local Area Networ

Modern Applications need Threads (ex1):
Editing and Printing documents in background.

Multithreaded/Parallel File Copy

reader ()
writer ()

buff[0]

lock (bufffi]) ; lock (buff[i]) ;
read(src,buff[i]) ; buff[1] pa e (I, e R ¢

unlock (buff[i]) ; unlock (buff[i]) ;

Cooperative Parallel Synchronized
Threads

Benefits of Threads

1.

Concurrency: Threads enable concurrent execution of
multiple tasks, allowing programs to perform multiple
operations S|multaneously

Responsiveness: By usm%threads, programs can
remain responsive even while performing time-
consuming tasks in the background.

Efficiency: Threads allow programs to make efficient
use of system resources, such as CPU cores, by
executing tasks Concurrently

Parallelism: Threads enable parallel processing, where
multiple threads can execute different parts of a program
in parallel, potentially speeding up execution.

Asynchronous Operations: Threads are useful for
handling asynchronous operations, such as
downloading files or makln% network requests, without
blocking the main program flow

11

Benefits of Threads

6. UserInterface: Threads are essential in graphical user
interfaces (GUIs) to keep the interface responsive while
performing background tasks.

7. Server Applications: Threads are valuable in server
applications to handle multiple client requests
concurrently, ensuring efficient resource utilization.

8. Background Processing: Threads are used for running
background tasks, such as data processing or periodic
Hlalntenance, without impacting the main execution

OW.

9. Multitasking: Threads allow programs to perform
multiple tasks at the same time, such as processing
input while generating output or handling multiple events
concurrently.

10. Resource Sharing: Threads facilitate sharin_% resources,
such as data structures or files, between different parts
of a program, enabling efficient collaboration and

12

Java Threads

* Java has built in thread support for:
* Multithreading
* Synchronization

* Thread Scheduling
e Inter-Thread Communication:

* currentThread start setPriority
* yield run getPriority

* sleep stop suspend
*resume

* Java Garbage Collector is a low-priority thread.

13

Two Ways to Create Threads

e Create a class that extends the Thread class

* Create a class that implements the Runnable
Interface

Thread \Runnable/ Thread
A A

MyThread MyRunnable

oJo O

(objects are threads) (objects with run() body)

[a] [b]

14

1st method: Extending Thread class

Create a class by extending Thread class and override run() method:
class MyThread extends Thread
{

public void run()

{
// thread body of execution

}
Create a thread:

MyThread thrl = new MyThread();
Start Execution of threads:
thrl.start (),
Create and Execute:
new MyThread() .start ()

15

An example

class MyThread extends Thread {
public void run() {
for(inti=1;i<11; i++)
System.out.println(" this thread is running ... ");

class ThreadTest{
public static void main(String [] args) {
MyThread thread1 = new MyThread();
thread1.start();

16

2nd method: Threads by implementing Runnable
Interface

* Create aclass thatimplements the interface Runnable and override run()
method:

class MyThread implements Runnable

public void run ()

{
// thread body of execution

Creating Object:
MyThread myObject = new MyThread() ;
Creating Thread Object:
Thread thrl = new Thread(myObject);
Start Execution:
thrl.start(); 17

An example

class MyRunnable implements Runnable {
public void run() {
for(inti=1;i<11; i++)
System.out.println(" this thread is running ... ");

class ThreadTest {
public static void main(String [] args) {
MyRuinnable runnable1 = new MyRunnable();
Thread thread2 = new Thread(runnable1);
thread2.start();

18

Life Cycle of Thread

start()
N

notify()
@ \di\spatch
R
walit()

stop() \

19

Example

* Write a program that creates 3
threads

Three threads example

class MyThread1 extends Thread

{
public void run()
{
for(int i=1;i<=5;i++)
{ System.out.println("\t From Thread1: i="+i);
System.out.println("Exit from A");
}
}

class MyThread2 extends Thread
{ public void run()

{
for(int j=1;j<=5;j++)
{
System.out.println("\t From Thread1: j= "+j);

}

System.out.println("Exit from B");

21

public class MyThread3 extends Thread

{
public void run()
{
for(int k=1;k<=5;k++)
{
System.out.println("\t From Thread3: k= "+k);
}
System.out.println("Exit from C");
}
}

public class ThreadTest

{ public static void main(String args[])
{ MyThread1 tr1 = new MyThread1();
MyThread1 tr2 = new MyThread?2();
MyThread1 tr3 = new MyThread3();

tr1.start();

tr2.start();

tr3.start();

22

Run 1

Run2

Process Parallelism

* intadd (int a, int b, int & result)
* // function stuff
* int sub(int a, int b, int & result)

* // function stuff Processor

Processor

Create(&tl, add, a,b, &

Create(&t2, sub, c,d, &

MISD and MIMD Processing

Data

o

rl

O

2

25

Data Parallelism

. . Data
e sort(int *array, int count)
EEIEER Processor do
e //......
114
pthread-t, threadl, thread?2; 4m 14
. dn/2
Processor _;j_ _____
n2/+1
114
114
dn

SIMD Processing

Thread Priority

*|n Java, each thread is assigned priority, which
affects the order in which it is scheduled for
running. The threads so far had same default
priority (NORM_PRIORITY) and they are served
using FCFS policy.

* Java allows users to change priority:

* ThreadName.setPriority(intNumber)
 MIN_PRIORITY =1
* NORM_PRIORITY=5
« MAX_PRIORITY=10

Thread Priority Example

class A extends Thread
{
public void run()
{
System.out.println("Thread A started");

for(inti=1;i<=4;i++)

{
System.out.println("\t From ThreadA: i= "+i);
}
System.out.println("Exit from A");
}
}
class B extends Thread
{
public void run()
{
System.out.println("Thread B started");
for(intj=1;j<=4;j++)
{
System.out.println("\t From ThreadB: j= "+j);
}
System.out.println("Exit from B");
}
}

28

Thread Priority Example

class C extends Thread

(public void run()
(System.out.println(‘"Thread C started");
for(int 43kt
(System.out.println(*\t From ThreadC: k= "+k);
}Sys(em,oul,pnnlln("Exi(from C*);
}
}

class ThreadPriority

public static void main(String args(])

AthreadA=new A();
B threadB=new B();
C threadC=new C();

threadC.setPriority(Thread.MAX_PRIORITY);

Priority(threadA.getPriority()+1);

setPriority(Thread.MIN_PRIORITY)
System.out.printin("Started Thread A");
threadA.start();
System.out.println(*Started Thread B");
threadB.start();
System.out.printin("Started Thread C");
threadC.start();

System.out.println("End of main thread");

29

Accessing Shared Resources

* Applications Access to Shared Resources need
to be coordinated.
* Printer (two person jobs cannot be printed at the same
time)
* Simultaneous operations on your bank account.

* Can the following operations be done at the same time
on the same account?
* Deposit()
« Withdraw()
* Enquire()

30

Online Bank: Serving Many Customers and
Operations

PC client

~
D St

Internet Ban
Server

31

Shared Resources q(r

* If one thread tries to read the data and other
thread tries to update the same data, it leads to
Inconsistent state.

*This can be prevented by synchronising access to
the data.

* Use “Synchronized” method:
* public synchronized void update()

* 1
°}

32

the driver: 3" Threads sharing the same
object

class InternetBankingSystem {
public static void main(String [] args) {

Account = new Account ();

Thread t1 = new Thread(new MyThread());
Thread t2 = new Thread(new YourThread());
Thread t3 = new Thread(new HerThread());
t1.start();

t2.start();

t3.start();

// DO some other operation
} // end main()

}

33

Shared account object between 3
threads

class MyThread implements Runnable {
Account account;
public MyThread (Account s) { account =s;}
public void run() { account.deposit(); }
} // end class MyThread

class YourThread implements Runnable {
Account account;
public YourThread (Account s) { account = S:
public void run() { account.withdraw();
} // end class YourThread

class HerThread implements Runnable {
Account account;
public HerThread (Account s) { account = s;
public void run() {account.enquire(); }
} // end class HerThread o

Monitor (shared object access):
serializes operation on shared object

class Account{ //the 'monitor’
int balance;

// if 'synchronized'is removed, the outcome is unpredictable
public synchronized void deposit() {
// METHOD BODY : balance += deposit_amount;

}

public synchronized void withdraw() {

// METHOD BODY: balance -= deposit_amount;
}

public synchronized void enquire() {

// METHOD BODY: display balance.

}

35

Multithreaded Server

Multithreaded Server

Client Process

Client Process

Server Process

D

User Mode

Kernel Mode

36

Assignment 1: Multithreaded MathServer —
Demonstrates the use of Sockets and Threads

A Client Program
What is sqrt(10)?

A Client Program
What is sin(10)?

“sqrt 4.0”

*

Multithreaded
MathServer
sin, cos, sqrt, etc.)

A Client
Program in “C++”

What is sin(10)?

37

A Multithreaded

MathSin

join

Program

MathThreads

MathCos

join

MathThreads

MathTan

38

Thread concuitericyropetatior
models

* The master/worker model
* The peer model
* Athread pipeline

The master/worker model

ey |
>

taskX

taskY

taskZ

=e

40

The peer model

Input

taskX

taskY

taskZ

e

41

A thread pipeline

Program

Resources

Devices Devices Devices

Multithreading and Multiprocessing
Deployment issues

On Shared and distributed memory systems

Multithreading - Multiprocessors

CPU

CPU

CPU

Multithreading on Uni-processor

 Concurrency Vs Parallelism

CPU

Multi-Processing (clusters & grids)

and Multi-Threaded Computing
Threaded Libraries, Multi-threaded 1/0O

Application

N e

Application

Application

2RV
CRRCTECT

%..

Better Response Times in Higher Throughput for

Multiple Application Parallelizeable Applications
Environments

References

* Rajkumar Buyya, Thamarai Selvi, Xingchen Chu, Mastering OOP
with Java, McGraw Hill (1) Press, New Delhi, India, 2009.

* Sun Java Tutorial— Concurrency:
* http://java.sun.com/docs/books/tutorial/essential/concurrency/

47

http://java.sun.com/docs/books/tutorial/essential/concurrency/

	Slide 1: ITSE322 Modern Programming Language: Advanced Java Multithreaded Programming using Java Threads Lecture 5
	Slide 2: Learning Objectives
	Slide 3: Java programs are single threaded
	Slide 4: What is a Thread?
	Slide 5: We can write Multithreaded Programs
	Slide 6: Single and Multithreaded Processes
	Slide 7: Multithreaded Server: For Serving Multiple Clients Concurrently
	Slide 8: Web Applications: Serving Many Users Simultaneously
	Slide 9: Modern Applications need Threads (ex1): Editing and Printing documents in background.
	Slide 10: Multithreaded/Parallel File Copy
	Slide 11: Benefits of Threads
	Slide 12: Benefits of Threads
	Slide 13: Java Threads
	Slide 14: Two Ways to Create Threads
	Slide 15: 1st method: Extending Thread class
	Slide 16: An example
	Slide 17: 2nd method: Threads by implementing Runnable interface
	Slide 18: An example
	Slide 19: Life Cycle of Thread
	Slide 20: Example
	Slide 21: Three threads example
	Slide 22
	Slide 23: Run 1
	Slide 24: Run2
	Slide 25: Process Parallelism
	Slide 26: Data Parallelism
	Slide 27: Thread Priority
	Slide 28: Thread Priority Example
	Slide 29: Thread Priority Example
	Slide 30: Accessing Shared Resources
	Slide 31: Online Bank: Serving Many Customers and Operations
	Slide 32: Shared Resources
	Slide 33: the driver: 3rd Threads sharing the same object
	Slide 34: Shared account object between 3 threads
	Slide 35: Monitor (shared object access): serializes operation on shared object
	Slide 36: Multithreaded Server
	Slide 37: Assignment 1: Multithreaded MathServer – Demonstrates the use of Sockets and Threads
	Slide 38: A Multithreaded Program
	Slide 39: Thread concurrency/operation models
	Slide 40: The master/worker model
	Slide 41: The peer model
	Slide 42: A thread pipeline
	Slide 43: Multithreading and Multiprocessing Deployment issues
	Slide 44: Multithreading - Multiprocessors
	Slide 45: Multithreading on Uni-processor
	Slide 46: Multi-Processing (clusters & grids) and Multi-Threaded Computing
	Slide 47: References

