
ITSE322 Modern Programming Language:
Advanced Java

Multithreaded Programming using Java
Threads

Lecture 5

1

Learning Objectives

• Understand the concept of
multithreading
• Create programs with multi-threads
• Accessing Shared Resources
•Synchronisation

• Understand Advanced Topics:
•Concurrency Models: master/worker,

pipeline, peer processing
•Multithreading Vs multiprocessing

2

Java programs are single threaded

class ABC
{
….

public void main(..)
{
…
..
}

}

3

begin

body

end

What is a Thread?
•A piece of code that runs in concurrent with

other threads.
•They are essential for performing background

tasks like file downloads, data processing, or
network communication without blocking the
main program flow.
•Threads allow for better resource utilization

by allowing different parts of a program to
work independently without waiting for each
other.
•They are essential for implementing

concurrent data structures and
synchronization mechanisms to ensure
thread safety and avoid data inconsistency.

4

We can write Multithreaded Programs

5

Main Thread

Thread A Thread B Thread C

start start
start

Threads may switch or exchange data/results

Single and Multithreaded Processes

6

Single-threaded Process

Single instruction stream Multiple instruction stream

Multiplethreaded Process

Threads of

Execution

Common

Address Space

threads are light-weight processes within a process

Multithreaded Server: For Serving
Multiple Clients Concurrently

7

Server

Threads

Server ProcessClient 1 Process

Client 2 Process

◼ Internet

Web Applications:
Serving Many Users Simultaneously

8

Internet

Server

PC client

Local Area Network

PDA

Modern Applications need Threads (ex1):
Editing and Printing documents in background.

9

Printing Thread

Editing Thread

Multithreaded/Parallel File Copy

10

reader()

{

- - - - - - - - -

-

lock(buff[i]);

read(src,buff[i]);

unlock(buff[i]);

- - - - - - - - -

-

}

writer()

{

- - - - - - - - - -

lock(buff[i]);

write(src,buff[i]);

unlock(buff[i]);

- - - - - - - - - -

}

buff[0]

buff[1]

Cooperative Parallel Synchronized
Threads

Benefits of Threads

1. Concurrency: Threads enable concurrent execution of
multiple tasks, allowing programs to perform multiple
operations simultaneously.

2. Responsiveness: By using threads, programs can
remain responsive even while performing time-
consuming tasks in the background.

3. Efficiency: Threads allow programs to make efficient
use of system resources, such as CPU cores, by
executing tasks concurrently.

4. Parallelism: Threads enable parallel processing, where
multiple threads can execute different parts of a program
in parallel, potentially speeding up execution.

5. Asynchronous Operations: Threads are useful for
handling asynchronous operations, such as
downloading files or making network requests, without
blocking the main program flow.

11

Benefits of Threads

6. User Interface: Threads are essential in graphical user
interfaces (GUIs) to keep the interface responsive while
performing background tasks.

7. Server Applications: Threads are valuable in server
applications to handle multiple client requests
concurrently, ensuring efficient resource utilization.

8. Background Processing: Threads are used for running
background tasks, such as data processing or periodic
maintenance, without impacting the main execution
flow.

9. Multitasking: Threads allow programs to perform
multiple tasks at the same time, such as processing
input while generating output or handling multiple events
concurrently.

10. Resource Sharing: Threads facilitate sharing resources,
such as data structures or files, between different parts
of a program, enabling efficient collaboration and

12

Java Threads

• Java has built in thread support for:
• Multithreading
• Synchronization
• Thread Scheduling
• Inter-Thread Communication:

• currentThread start setPriority
• yield run getPriority
• sleep stop suspend
• resume

• Java Garbage Collector is a low-priority thread.

13

Two Ways to Create Threads

• Create a class that extends the Thread class
• Create a class that implements the Runnable

interface

14

Thread

MyThread

Runnable

MyRunnable

Thread

(objects are threads) (objects with run() body)

[a] [b]

1st method: Extending Thread class
• Create a class by extending Thread class and override run() method:

class MyThread extends Thread

{

public void run()

{

// thread body of execution

}

}

• Create a thread:

MyThread thr1 = new MyThread();

• Start Execution of threads:

thr1.start();

• Create and Execute:

new MyThread().start();

15

An example

class MyThread extends Thread {
public void run() {

for(int i=1 ; i<11; i++)
System.out.println(" this thread is running ... ");

}
}

class ThreadTest {
public static void main(String [] args) {

MyThread thread1 = new MyThread();
thread1.start();

}
}

16

2nd method: Threads by implementing Runnable
interface
• Create a class that implements the interface Runnable and override run()

method:
class MyThread implements Runnable

{

.....

public void run()

{

// thread body of execution

}

}

• Creating Object:
MyThread myObject = new MyThread();

• Creating Thread Object:
Thread thr1 = new Thread(myObject);

• Start Execution:
thr1.start(); 17

An example

class MyRunnable implements Runnable {
public void run() {

for(int i=1 ; i<11; i++)
System.out.println(" this thread is running ... ");

}
}

class ThreadTest {
public static void main(String [] args) {

MyRuinnable runnable1 = new MyRunnable();
Thread thread2 = new Thread(runnable1);
thread2.start();

}
}

18

Life Cycle of Thread

19

new

ready

start()

running

deadstop()

dispatch

completion

wait()

waiting
sleeping blocked

notify()

sleep()

Block on I/O

I/O completed

Time expired/
interrupted

suspend()

resume()

• Write a program that creates 3
threads

20

Example

Three threads example
class MyThread1 extends Thread

{
public void run()

{

for(int i=1;i<=5;i++)
{ System.out.println("\t From Thread1: i= "+i); }

System.out.println("Exit from A");

}
}

class MyThread2 extends Thread

{ public void run()
{

for(int j=1;j<=5;j++)

{
System.out.println("\t From Thread1: j= "+j);

}

System.out.println("Exit from B");
}

}

21

public class MyThread3 extends Thread
{

public void run()
{

for(int k=1;k<=5;k++)
{

System.out.println("\t From Thread3: k= "+k);
}
System.out.println("Exit from C");

}
}
public class ThreadTest
{ public static void main(String args[])

{ MyThread1 tr1 = new MyThread1();
MyThread1 tr2 = new MyThread2();
MyThread1 tr3 = new MyThread3();

tr1.start();
tr2.start();
tr3.start();

}
} 22

Run 1

23

Run2

24

Process Parallelism

• int add (int a, int b, int & result)
• // function stuff
• int sub(int a, int b, int & result)
• // function stuff

25

pthread t1, t2;

pthread-create(&t1, add, a,b, & r1);

pthread-create(&t2, sub, c,d, & r2);

pthread-par (2, t1, t2);

MISD and MIMD Processing

a

b

r1

c

d

r2

add

sub

Processor

Data

IS1

IS2

Processor

Data Parallelism

• sort(int *array, int count)
• //......
• //......

26

do

“

“

dn/2

dn2/+1

“

“

dn

Sort

Data

IS

pthread-t, thread1, thread2;

“

“

pthread-create(& thread1, sort, array, N/2);

pthread-create(& thread2, sort, array, N/2);

pthread-par(2, thread1, thread2);

SIMD Processing

Sort

Processor

Processor

Thread Priority

• In Java, each thread is assigned priority, which
affects the order in which it is scheduled for
running. The threads so far had same default
priority (NORM_PRIORITY) and they are served
using FCFS policy.
• Java allows users to change priority:

• ThreadName.setPriority(intNumber)
• MIN_PRIORITY = 1
• NORM_PRIORITY=5
• MAX_PRIORITY=10

27

Thread Priority Example

class A extends Thread

{

public void run()

{

System.out.println("Thread A started");

for(int i=1;i<=4;i++)

{

System.out.println("\t From ThreadA: i= "+i);

}

System.out.println("Exit from A");

}

}

class B extends Thread

{

public void run()

{

System.out.println("Thread B started");

for(int j=1;j<=4;j++)

{

System.out.println("\t From ThreadB: j= "+j);

}

System.out.println("Exit from B");

}

}

28

Thread Priority Example

class C extends Thread

{

public void run()

{

System.out.println("Thread C started");

for(int k=1;k<=4;k++)

{

System.out.println("\t From ThreadC: k= "+k);

}

System.out.println("Exit from C");

}

}

class ThreadPriority

{

public static void main(String args[])

{

A threadA=new A();

B threadB=new B();

C threadC=new C();

threadC.setPriority(Thread.MAX_PRIORITY);

threadB.setPriority(threadA.getPriority()+1);

threadA.setPriority(Thread.MIN_PRIORITY);

System.out.println("Started Thread A");

threadA.start();

System.out.println("Started Thread B");

threadB.start();

System.out.println("Started Thread C");

threadC.start();

System.out.println("End of main thread");

}

}

29

Accessing Shared Resources

•Applications Access to Shared Resources need
to be coordinated.
• Printer (two person jobs cannot be printed at the same

time)
• Simultaneous operations on your bank account.
• Can the following operations be done at the same time

on the same account?
• Deposit()
• Withdraw()
• Enquire()

30

Online Bank: Serving Many Customers and
Operations

31

Internet Bank

Server

PC client

Local Area Network

PD

A

Bank
Database

Shared Resources

• If one thread tries to read the data and other
thread tries to update the same data, it leads to
inconsistent state.
•This can be prevented by synchronising access to

the data.
•Use “Synchronized” method:

• public synchronized void update()
• {

• …
• }

32

the driver: 3rd Threads sharing the same
object

33

class InternetBankingSystem {

 public static void main(String [] args) {

 Account accountObject = new Account ();

 Thread t1 = new Thread(new MyThread(accountObject));

 Thread t2 = new Thread(new YourThread(accountObject));

 Thread t3 = new Thread(new HerThread(accountObject));

 t1.start();

 t2.start();

 t3.start();

 // DO some other operation

 } // end main()

}

Shared account object between 3
threads

34

class MyThread implements Runnable {

 Account account;

 public MyThread (Account s) { account = s;}

 public void run() { account.deposit(); }

} // end class MyThread

class YourThread implements Runnable {

 Account account;

 public YourThread (Account s) { account = s;}

 public void run() { account.withdraw(); }

} // end class YourThread

class HerThread implements Runnable {

 Account account;

 public HerThread (Account s) { account = s; }

 public void run() {account.enquire(); }

} // end class HerThread

account

(shared

object)

Monitor (shared object access):
serializes operation on shared object
class Account { // the 'monitor'

int balance;

// if 'synchronized' is removed, the outcome is unpredictable
public synchronized void deposit() {

// METHOD BODY : balance += deposit_amount;
}

public synchronized void withdraw() {
// METHOD BODY: balance -= deposit_amount;

}
public synchronized void enquire() {
// METHOD BODY: display balance.

}
}

35

Multithreaded Server

36

Server

Threads

Message Passing

Facility

Server Process
Client Process

Client Process

User Mode

Kernel Mode

Multithreaded Server

Assignment 1: Multithreaded MathServer –
Demonstrates the use of Sockets and Threads

37

Multithreaded
MathServer

(sin, cos, sqrt, etc.)

A Client Program
What is sqrt(10)?

A Client Program
What is sin(10)?

A Client
Program in “C++”
What is sin(10)?

A Client
Program in “C”

What is sin(10)?

“sqrt 4.0”

“2.0”

A Multithreaded Program

38

MathThreads

MathSin MathCos MathTan

start start start

MathThreads

join join join

Thread concurrency/operation
models
• The master/worker model
• The peer model
• A thread pipeline

39

Thread Programming models

The master/worker model

40

taskX

taskY

taskZ

main ()

Workers
Program

Files

Resources

Database

s

Disks

Special

Devices

Master

Input (Stream)

The peer model

41

taskX

taskY

Workers
Program

Files

Resources

Database

s

Disks

Special

Devices

taskZ

Input

A thread pipeline

42

A thread pipeline

Resources Files

Database

s

Disks

Special

Devices

Files

Database

s

Disks

Special

Devices

Files

Database

s

Disks

Special

Devices

Stage 1 Stage 2 Stage 3

Program Filter Threads

Input (Stream)

Multithreading and Multiprocessing
Deployment issues

43

On Shared and distributed memory systems

Multithreading - Multiprocessors

44

Process Parallelism

P1

P2

P3

time

No of execution processes <= the number of CPUs

CPU

CPU

CPU

Multithreading on Uni-processor

• Concurrency Vs Parallelism

45

Process Concurrency

Number of Simultaneous execution units > number of CPUs

P1

P2

P3

time

CPU

Multi-Processing (clusters & grids)
and Multi-Threaded Computing

46

Application

Application Application

Application

CPU

Better Response Times in
Multiple Application
Environments

Higher Throughput for
Parallelizeable Applications

CPU

CPU

CPU CPU CPU

Threaded Libraries, Multi-threaded I/O

References

• Rajkumar Buyya, Thamarai Selvi, Xingchen Chu, Mastering OOP
with Java, McGraw Hill (I) Press, New Delhi, India, 2009.

• Sun Java Tutorial – Concurrency:
• http://java.sun.com/docs/books/tutorial/essential/concurrency/

47

http://java.sun.com/docs/books/tutorial/essential/concurrency/

	Slide 1: ITSE322 Modern Programming Language: Advanced Java Multithreaded Programming using Java Threads Lecture 5
	Slide 2: Learning Objectives
	Slide 3: Java programs are single threaded
	Slide 4: What is a Thread?
	Slide 5: We can write Multithreaded Programs
	Slide 6: Single and Multithreaded Processes
	Slide 7: Multithreaded Server: For Serving Multiple Clients Concurrently
	Slide 8: Web Applications: Serving Many Users Simultaneously
	Slide 9: Modern Applications need Threads (ex1): Editing and Printing documents in background.
	Slide 10: Multithreaded/Parallel File Copy
	Slide 11: Benefits of Threads
	Slide 12: Benefits of Threads
	Slide 13: Java Threads
	Slide 14: Two Ways to Create Threads
	Slide 15: 1st method: Extending Thread class
	Slide 16: An example
	Slide 17: 2nd method: Threads by implementing Runnable interface
	Slide 18: An example
	Slide 19: Life Cycle of Thread
	Slide 20: Example
	Slide 21: Three threads example
	Slide 22
	Slide 23: Run 1
	Slide 24: Run2
	Slide 25: Process Parallelism
	Slide 26: Data Parallelism
	Slide 27: Thread Priority
	Slide 28: Thread Priority Example
	Slide 29: Thread Priority Example
	Slide 30: Accessing Shared Resources
	Slide 31: Online Bank: Serving Many Customers and Operations
	Slide 32: Shared Resources
	Slide 33: the driver: 3rd Threads sharing the same object
	Slide 34: Shared account object between 3 threads
	Slide 35: Monitor (shared object access): serializes operation on shared object
	Slide 36: Multithreaded Server
	Slide 37: Assignment 1: Multithreaded MathServer – Demonstrates the use of Sockets and Threads
	Slide 38: A Multithreaded Program
	Slide 39: Thread concurrency/operation models
	Slide 40: The master/worker model
	Slide 41: The peer model
	Slide 42: A thread pipeline
	Slide 43: Multithreading and Multiprocessing Deployment issues
	Slide 44: Multithreading - Multiprocessors
	Slide 45: Multithreading on Uni-processor
	Slide 46: Multi-Processing (clusters & grids) and Multi-Threaded Computing
	Slide 47: References

