
 7من 1الصفحة

JavaScript Variables

A variable is a label that references a value like a number or string. Before

using a variable, you need to declare it.

Declare a variable

To declare a variable, you use the var keyword followed by the variable name

as follows:

var message;

A variable name can be any valid identifier. By default, the message variable has

a special value undefined if you have not assigned a value to it.

Variable names follow these rules:

 Variable names are case-sensitive. This means that

the message and Message are different variables.

 Variable names can only contain letters, numbers, underscores, or

dollar signs and cannot contain spaces. Also, variable names must

begin with a letter, an underscore (_) or a dollar sign ($).

 Variable names cannot use the reserved words.

By convention, variable names use camelcase like message, yourAge, and myName.

JavaScript is a dynamically typed language. This means that you don’t need to

specify the variable’s type in the declaration like other static typed languages

such as Java or C#.

Starting in ES6, you can use the let keyword to declare a variable like this:

let message;

It’s a good practice to use the let keyword to declare a variable.

Initialize a variable

Once you have declared a variable, you can initialize it with a value. To

initialize a variable, you specify the variable name, followed by an equals sign

(=) and a value.

https://www.javascripttutorial.net/javascript-data-types/#undefined
https://www.javascripttutorial.net/javascript-data-types/
https://www.csharptutorial.net/csharp-tutorial/csharp-variables/

 7من 2الصفحة

For example, the following declares the message variable and initializes it with a

literal string "Hello":

let message;

message = "Hello";

To declare and initialize a variable at the same time, you use the following

syntax:

let variableName = value;

For example, the following statement declares the message variable and

initializes it with the literal string "Hello":

let message = "Hello";

JavaScript allows you to declare two or more variables using a single

statement. To separate two variable declarations, you use a comma (,) like this:

let message = "Hello",

 counter = 100;

Since JavaScript is a dynamically typed language, you can assign a value of a

different type to a variable. Although, it is not recommended. For example:

let message = 'Hello';

message = 100;
)

Change a variable

Once you initialize a variable, you can change its value by assigning a different

value. For example:

let message = "Hello";

message = 'Bye';

Undefined vs. undeclared variables

It’s important to distinguish between undefined and undeclared variables.

An undefined variable is a variable that has been declared but has not been

initialized with a value. For example:

let message;

console.log(message); // undefined

 7من 3الصفحة

In this example, the message variable is declared but not initialized. Therefore,

the message variable is undefined.

In contrast, an undeclared variable is a variable that has not been declared. For

example:

console.log(counter);

Output:

console.log(counter);

 ^

ReferenceError: counter is not defined

In this example, the counter variable has not been declared. Hence, accessing it

causes a ReferenceError.

Constants

A constant holds a value that doesn’t change. To declare a constant, you use

the const keyword. When defining a constant, you need to initialize it with a

value. For example:

const workday = 5;

Once defining a constant, you cannot change its value.

The following example attempts to change the value of the workday constant

to 4 and causes an error:

workday = 2;

Error:

Uncaught TypeError: Assignment to constant variable.

Summary

 A variable is a label that references a value.

 Use the let keyword to declare a variable.

 An undefined variable is a variable that has been declared but not

initialized while an undeclared variable is variable that has not been

declared.

 Use the const keyword to define a read only reference to a value.

 7من 4الصفحة

Differences between the var and let keywords.

#1: Variable scopes

The var variables belong to the global scope when you define them

outside a function. For example:

var counter;

In this example, the counter is a global variable. It means that

the counter variable is accessible by any functions.

When you declare a variable inside a function using

the var keyword, the scope of the variable is local. For example:

function increase() {

 var counter = 10;

}

// cannot access the counter variable here

In this example, the counter variable is local to

the increase() function. It cannot be accessible outside of the

function.

The following example displays four numbers from 0 to 4 inside

the loop and the number 5 outside the loop.

for (var i = 0; i < 5; i++) {

 console.log("Inside the loop:", i);

}

console.log("Outside the loop:", i);

Output:

Inside the loop: 0

Inside the loop: 1

Inside the loop: 2

Inside the loop: 3

 7من 5الصفحة

Inside the loop: 4

Outside the loop: 5

In this example, the i variable is a global variable. Therefore, it can

be accessed from both inside and after the for loop.

The following example uses the let keyword instead of

the var keyword:

for (let i = 0; i < 5; i++) {

 console.log("Inside the loop:", i);

}

console.log("Outside the loop:", i);

In this case, the code shows four numbers from 0 to 4 inside a loop

and a reference error:

Inside the loop: 0

Inside the loop: 1

Inside the loop: 2

Inside the loop: 3

Inside the loop: 4

The error:

Uncaught ReferenceError: i is not defined

Since this example uses the let keyword, the variable i is blocked

scope. It means that the variable i only exists and can be accessible

inside the for loop block.

In JavaScript, a block is delimited by a pair of curly braces {} like in

the if...else and for statements:

if(condition) {

 // inside a block

}

for(...) {

 // inside a block

}

https://www.javascripttutorial.net/javascript-for-loop/

 7من 6الصفحة

#2: Creating global properties

The global var variables are added to the global

object as properties. The global object is window on the web

browser and global on Node.js:

var counter = 0;

console.log(window.counter); // 0

However, the let variables are not added to the global object:

let counter = 0;

console.log(window.counter); // undefined

#3: Redeclaration

The var keyword allows you to redeclare a variable without any

issue:

var counter = 10;

var counter;

console.log(counter); // 10

However, if you redeclare a variable with the let keyword, you will

get an error:

let counter = 10;

let counter; // error

#4: Life cycles of var and let variables

The life cycles of both var and let variables have two steps: creation

and execution.

The var variables

 In the creation phase, the JavaScript engine assigns storage

spaces to var variables and immediately initializes them

to undefined.

 In the execution phase, the JavaScript engine assigns

the var variables the values specified by the assignments if

https://www.javascripttutorial.net/es-next/javascript-globalthis/
https://www.javascripttutorial.net/es-next/javascript-globalthis/
https://www.javascripttutorial.net/javascript-object-properties/

 7من 7الصفحة

there are ones. Otherwise, the var variables remain

undefined.

The let variables

 In the creation phase, the JavaScript engine assigns storage

spaces to the let variables but does not initialize the variables.

Referencing uninitialized variables will cause a ReferenceError.

 The let variables have the same execution phase as

the var variables.

