JavaScript Variables

A variable is a label that references a value like a number or string. Before
using a variable, you need to declare it.

Declare a variable

To declare a variable, you use the var keyword followed by the variable name
as follows:

message;,

A variable name can be any valid identifier. By default, the message variable has
a special value undefined if you have not assigned a value to it.

Variable names follow these rules:

o Variable names are case-sensitive. This means that
the message and Message are different variables.

e Variable names can only contain letters, numbers, underscores, or
dollar signs and cannot contain spaces. Also, variable names must
begin with a letter, an underscore () or a dollar sign ().

e Variable names cannot use the reserved words.

By convention, variable names use camelcase like message, yourAge, and myName.

JavaScript is a dynamically typed language. This means that you don’t need to
specify the variable’s type in the declaration like other static typed languages
such as Java or C#.

Starting in ES6, you can use the let keyword to declare a variable like this:

message;

It's a good practice to use the let keyword to declare a variable.

Initialize a variable
Once you have declared a variable, you can initialize it with a value. To

initialize a variable, you specify the variable name, followed by an equals sign
(=) and a value.

7 e 1 4aaall


https://www.javascripttutorial.net/javascript-data-types/#undefined
https://www.javascripttutorial.net/javascript-data-types/
https://www.csharptutorial.net/csharp-tutorial/csharp-variables/

For example, the following declares the message variable and initializes it with a
literal string "Hello™:

message;
message = "Hello";

To declare and initialize a variable at the same time, you use the following
syntax:

variableName = value;

For example, the following statement declares the message variable and
initializes it with the literal string "Hello":

message = "Hello";

JavaScript allows you to declare two or more variables using a single
statement. To separate two variable declarations, you use a comma (,) like this:

message = "Hello",
counter = 100;

Since JavaScript is a dynamically typed language, you can assign a value of a
different type to a variable. Although, it is not recommended. For example:

message = 'Hello';
message = 100;

Change a variable

Once you initialize a variable, you can change its value by assigning a different

message = "Hello";
message = 'Bye';

<
L
[
®
-
®)
-
¢}
x
Q
3
=2
®

Undefined vs. undeclared variables

It's important to distinguish between undefined and undeclared variables.

An undefined variable is a variable that has been declared but has not been
initialized with a value. For example:

message;




In this example, the message variable is declared but not initialized. Therefore,
the message variable is undefined.

In contrast, an undeclared variable is a variable that has not been declared. For
example:

console.log(counter) ;

In this example, the counter variable has not been declared. Hence, accessing it
causes a ReferenceError.

Constants

A constant holds a value that doesn’t change. To declare a constant, you use
the const keyword. When defining a constant, you need to initialize it with a
value. For example:

Once defining a constant, you cannot change its value.

The following example attempts to change the value of the workday constant
to 4 and causes an error:

workday = 2;

Error;

Uncaught TypeError: Assignment to constant variable.

Summary

e Avariable is a label that references a value.

e Use the let keyword to declare a variable.

e An undefined variable is a variable that has been declared but not
initialized while an undeclared variable is variable that has not been
declared.

e Use the const keyword to define a read only reference to a value.

7 O« 3 aaall



Differences between the var and let keywords.

#1: Variable scopes

The var variables belong to the global scope when you define them
outside a function. For example:

counter;

In this example, the counter is a global variable. It means that
the counter variable is accessible by any functions.

When you declare a variable inside a function using
the var keyword, the scope of the variable is local. For example:

function increase () {

In this example, the counter variable is local to
the increase() function. It cannot be accessible outside of the
function.

The following example displays four numbers from 0 to 4 inside
the loop and the number 5 outside the loop.

1);

Inside the loop:

7 o0 4 daial




Inside the loop: 4

Outside the loop: 5

In this example, the i variable is a global variable. Therefore, it can
be accessed from both inside and after the for loop.

The following example uses the let keyword instead of
the var keyword:

console.log("Inside the loop:", 1)

console.log("Outside the loop:", 1i);

In this case, the code shows four numbers from 0 to 4 inside a loop
and a reference error:

Inside the loop: O
nside the loop:
Inside the loop:
nside the loop:
Inside the loop: 4

The error:

Uncaught ReferenceError: i is not defined

Since this example uses the let keyword, the variable i is blocked
scope. It means that the variable i only exists and can be accessible
inside the for loop block.

In JavaScript, a block is delimited by a pair of curly braces {} like in
the if...else and for statements:

(condition) {



https://www.javascripttutorial.net/javascript-for-loop/

#2: Creating global properties

The global var variables are added to the global
object as properties. The global object is window on the web
browser and global on Nodejs:

counter = 0;
console.log(window.counter) ;

However, the let variables are not added to the global object:

counter = 0;
console.log(window.counter) ;

#3: Redeclaration

The var keyword allows you to redeclare a variable without any
Issue:

counter = 10;

counter;
console.log(counter);

However, if you redeclare a variable with the let keyword, you will
get an error:

counter = 10;
counter;

#4: Life cycles of var and let variables

The life cycles of both var and let variables have two steps: creation
and execution.

The var variables

« Inthe creation phase, the JavaScript engine assigns storage
spaces to var variables and immediately initializes them
to undefined.

« In the execution phase, the JavaScript engine assigns
the var variables the values specified by the assignments if

7 - 6 dsaall


https://www.javascripttutorial.net/es-next/javascript-globalthis/
https://www.javascripttutorial.net/es-next/javascript-globalthis/
https://www.javascripttutorial.net/javascript-object-properties/

there are ones. Otherwise, the var variables remain
undefined.

The let variables

« In the creation phase, the JavaScript engine assigns storage
spaces to the let variables but does not initialize the variables.
Referencing uninitialized variables will cause a ReferenceError.

« The let variables have the same execution phase as
the var variables.

7 e 7 Al



